Module 20: The Integumentary System

Lesson 2: Accessory Structures of the Skin

Cấu Trúc Phụ Của Da

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module The Integumentary System.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: The Integumentary System

acne
skin condition due to infected sebaceous glands
albinism
genetic disorder that affects the skin, in which there is no melanin production
anagen
active phase of the hair growth cycle
apocrine sweat gland
type of sweat gland that is associated with hair follicles in the armpits and genital regions
arrector pili
smooth muscle that is activated in response to external stimuli that pull on hair follicles and make the hair “stand up”
basal cell
type of stem cell found in the stratum basale and in the hair matrix that continually undergoes cell division, producing the keratinocytes of the epidermis
basal cell carcinoma
cancer that originates from basal cells in the epidermis of the skin
bedsore
sore on the skin that develops when regions of the body start necrotizing due to constant pressure and lack of blood supply; also called decubitis ulcers
callus
thickened area of skin that arises due to constant abrasion
catagen
transitional phase marking the end of the anagen phase of the hair growth cycle
corn
type of callus that is named for its shape and the elliptical motion of the abrasive force
cortex
in hair, the second or middle layer of keratinocytes originating from the hair matrix, as seen in a cross-section of the hair bulb
cuticle
in hair, the outermost layer of keratinocytes originating from the hair matrix, as seen in a cross-section of the hair bulb
dermal papilla
(plural = dermal papillae) extension of the papillary layer of the dermis that increases surface contact between the epidermis and dermis
dermis
layer of skin between the epidermis and hypodermis, composed mainly of connective tissue and containing blood vessels, hair follicles, sweat glands, and other structures
desmosome
structure that forms an impermeable junction between cells
eccrine sweat gland
type of sweat gland that is common throughout the skin surface; it produces a hypotonic sweat for thermoregulation
eczema
skin condition due to an allergic reaction, which resembles a rash
elastin fibers
fibers made of the protein elastin that increase the elasticity of the dermis
eleiden
clear protein-bound lipid found in the stratum lucidum that is derived from keratohyalin and helps to prevent water loss
epidermis
outermost tissue layer of the skin
eponychium
nail fold that meets the proximal end of the nail body, also called the cuticle
external root sheath
outer layer of the hair follicle that is an extension of the epidermis, which encloses the hair root
first-degree burn
superficial burn that injures only the epidermis
fourth-degree burn
burn in which full thickness of the skin and underlying muscle and bone is damaged
glassy membrane
layer of connective tissue that surrounds the base of the hair follicle, connecting it to the dermis
hair
keratinous filament growing out of the epidermis
hair bulb
structure at the base of the hair root that surrounds the dermal papilla
hair follicle
cavity or sac from which hair originates
hair matrix
layer of basal cells from which a strand of hair grows
hair papilla
mass of connective tissue, blood capillaries, and nerve endings at the base of the hair follicle
hair root
part of hair that is below the epidermis anchored to the follicle
hair shaft
part of hair that is above the epidermis but is not anchored to the follicle
hypodermis
connective tissue connecting the integument to the underlying bone and muscle
hyponychium
thickened layer of stratum corneum that lies below the free edge of the nail
integumentary system
skin and its accessory structures
internal root sheath
innermost layer of keratinocytes in the hair follicle that surround the hair root up to the hair shaft
keloid
type of scar that has layers raised above the skin surface
keratin
type of structural protein that gives skin, hair, and nails its hard, water-resistant properties
keratinocyte
cell that produces keratin and is the most predominant type of cell found in the epidermis
keratohyalin
granulated protein found in the stratum granulosum
Langerhans cell
specialized dendritic cell found in the stratum spinosum that functions as a macrophage
lunula
basal part of the nail body that consists of a crescent-shaped layer of thick epithelium
medulla
in hair, the innermost layer of keratinocytes originating from the hair matrix
Meissner corpuscle
(also, tactile corpuscle) receptor in the skin that responds to light touch
melanin
pigment that determines the color of hair and skin
melanocyte
cell found in the stratum basale of the epidermis that produces the pigment melanin
melanoma
type of skin cancer that originates from the melanocytes of the skin
melanosome
intercellular vesicle that transfers melanin from melanocytes into keratinocytes of the epidermis
Merkel cell
receptor cell in the stratum basale of the epidermis that responds to the sense of touch
metastasis
spread of cancer cells from a source to other parts of the body
nail bed
layer of epidermis upon which the nail body forms
nail body
main keratinous plate that forms the nail
nail cuticle
fold of epithelium that extends over the nail bed, also called the eponychium
nail fold
fold of epithelium at that extend over the sides of the nail body, holding it in place
nail root
part of the nail that is lodged deep in the epidermis from which the nail grows
Pacinian corpuscle
(also, lamellated corpuscle) receptor in the skin that responds to vibration
papillary layer
superficial layer of the dermis, made of loose, areolar connective tissue
reticular layer
deeper layer of the dermis; it has a reticulated appearance due to the presence of abundant collagen and elastin fibers
rickets
disease in children caused by vitamin D deficiency, which leads to the weakening of bones
scar
collagen-rich skin formed after the process of wound healing that is different from normal skin
sebaceous gland
type of oil gland found in the dermis all over the body and helps to lubricate and waterproof the skin and hair by secreting sebum
sebum
oily substance that is composed of a mixture of lipids that lubricates the skin and hair
second-degree burn
partial-thickness burn that injures the epidermis and a portion of the dermis
squamous cell carcinoma
type of skin cancer that originates from the stratum spinosum of the epidermis
stratum basale
deepest layer of the epidermis, made of epidermal stem cells
stratum corneum
most superficial layer of the epidermis
stratum granulosum
layer of the epidermis superficial to the stratum spinosum
stratum lucidum
layer of the epidermis between the stratum granulosum and stratum corneum, found only in thick skin covering the palms, soles of the feet, and digits
stratum spinosum
layer of the epidermis superficial to the stratum basale, characterized by the presence of desmosomes
stretch mark
mark formed on the skin due to a sudden growth spurt and expansion of the dermis beyond its elastic limits
sudoriferous gland
sweat gland
telogen
resting phase of the hair growth cycle initiated with catagen and terminated by the beginning of a new anagen phase of hair growth
third-degree burn
burn that penetrates and destroys the full thickness of the skin (epidermis and dermis)
vitamin D
compound that aids absorption of calcium and phosphates in the intestine to improve bone health
vitiligo
skin condition in which melanocytes in certain areas lose the ability to produce melanin, possibly due an autoimmune reaction that leads to loss of color in patches
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
Accessory structures of the skin include hair, nails, sweat glands, and sebaceous glands. These structures embryologically originate from the epidermis and can extend down through the dermis into the hypodermis.
Hair is a keratinous filament growing out of the epidermis. It is primarily made of dead, keratinized cells. Strands of hair originate in an epidermal penetration of the dermis called the hair follicle. The hair shaft is the part of the hair not anchored to the follicle, and much of this is exposed at the skin’s surface. The rest of the hair, which is anchored in the follicle, lies below the surface of the skin and is referred to as the hair root. The hair root ends deep in the dermis at the hair bulb, and includes a layer of mitotically active basal cells called the hair matrix. The hair bulb surrounds the hair papilla, which is made of connective tissue and contains blood capillaries and nerve endings from the dermis (Figure 1).

Just as the basal layer of the epidermis forms the layers of epidermis that get pushed to the surface as the dead skin on the surface sheds, the basal cells of the hair bulb divide and push cells outward in the hair root and shaft as the hair grows. The medulla forms the central core of the hair, which is surrounded by the cortex, a layer of compressed, keratinized cells that is covered by an outer layer of very hard, keratinized cells known as the cuticle. These layers are depicted in a longitudinal cross-section of the hair follicle, although not all hair has a medullary layer (Figure 2). Hair texture (straight, curly) is determined by the shape and structure of the cortex, and to the extent that it is present, the medulla. The shape and structure of these layers are, in turn, determined by the shape of the hair follicle. Hair growth begins with the production of keratinocytes by the basal cells of the hair bulb. As new cells are deposited at the hair bulb, the hair shaft is pushed through the follicle toward the surface. Keratinization is completed as the cells are pushed to the skin surface to form the shaft of hair that is externally visible. The external hair is completely dead and composed entirely of keratin. For this reason, our hair does not have sensation. Furthermore, you can cut your hair or shave without damaging the hair structure because the cut is superficial. Most chemical hair removers also act superficially; however, electrolysis and yanking both attempt to destroy the hair bulb so hair cannot grow.

The wall of the hair follicle is made of three concentric layers of cells. The cells of the internal root sheath surround the root of the growing hair and extend just up to the hair shaft. They are derived from the basal cells of the hair matrix. The external root sheath, which is an extension of the epidermis, encloses the hair root. It is made of basal cells at the base of the hair root and tends to be more keratinous in the upper regions. The glassy membrane is a thick, clear connective tissue sheath covering the hair root, connecting it to the tissue of the dermis.

Hair serves a variety of functions, including protection, sensory input, thermoregulation, and communication. For example, hair on the head protects the skull from the sun. The hair in the nose and ears, and around the eyes (eyelashes) defends the body by trapping and excluding dust particles that may contain allergens and microbes. Hair of the eyebrows prevents sweat and other particles from dripping into and bothering the eyes. Hair also has a sensory function due to sensory innervation by a hair root plexus surrounding the base of each hair follicle. Hair is extremely sensitive to air movement or other disturbances in the environment, much more so than the skin surface. This feature is also useful for the detection of the presence of insects or other potentially damaging substances on the skin surface. Each hair root is connected to a smooth muscle called the arrector pili that contracts in response to nerve signals from the sympathetic nervous system, making the external hair shaft “stand up.” The primary purpose for this is to trap a layer of air to add insulation. This is visible in humans as goose bumps and even more obvious in animals, such as when a frightened cat raises its fur. Of course, this is much more obvious in organisms with a heavier coat than most humans, such as dogs and cats.
Hair grows and is eventually shed and replaced by new hair. This occurs in three phases. The first is the anagen phase, during which cells divide rapidly at the root of the hair, pushing the hair shaft up and out. The length of this phase is measured in years, typically from 2 to 7 years. The catagen phase lasts only 2 to 3 weeks, and marks a transition from the hair follicle’s active growth. Finally, during the telogen phase, the hair follicle is at rest and no new growth occurs. At the end of this phase, which lasts about 2 to 4 months, another anagen phase begins. The basal cells in the hair matrix then produce a new hair follicle, which pushes the old hair out as the growth cycle repeats itself. Hair typically grows at the rate of 0.3 mm per day during the anagen phase. On average, 50 hairs are lost and replaced per day. Hair loss occurs if there is more hair shed than what is replaced and can happen due to hormonal or dietary changes. Hair loss can also result from the aging process, or the influence of hormones.

Similar to the skin, hair gets its color from the pigment melanin, produced by melanocytes in the hair papilla. Different hair color results from differences in the type of melanin, which is genetically determined. As a person ages, the melanin production decreases, and hair tends to lose its color and becomes gray and/or white.
The nail bed is a specialized structure of the epidermis that is found at the tips of our fingers and toes. The nail body is formed on the nail bed, and protects the tips of our fingers and toes as they are the farthest extremities and the parts of the body that experience the maximum mechanical stress (Figure 3). In addition, the nail body forms a back-support for picking up small objects with the fingers. The nail body is composed of densely packed dead keratinocytes. The epidermis in this part of the body has evolved a specialized structure upon which nails can form. The nail body forms at the nail root, which has a matrix of proliferating cells from the stratum basale that enables the nail to grow continuously. The lateral nail fold overlaps the nail on the sides, helping to anchor the nail body. The nail fold that meets the proximal end of the nail body forms the nail cuticle, also called the eponychium. The nail bed is rich in blood vessels, making it appear pink, except at the base, where a thick layer of epithelium over the nail matrix forms a crescent-shaped region called the lunula (the “little moon”). The area beneath the free edge of the nail, furthest from the cuticle, is called the hyponychium. It consists of a thickened layer of stratum corneum.
When the body becomes warm, sudoriferous glands produce sweat to cool the body. Sweat glands develop from epidermal projections into the dermis and are classified as merocrine glands; that is, the secretions are excreted by exocytosis through a duct without affecting the cells of the gland. There are two types of sweat glands, each secreting slightly different products.

An eccrine sweat gland is a type of gland that produces a hypotonic sweat for thermoregulation. These glands are found all over the skin’s surface, but are especially abundant on the palms of the hand, the soles of the feet, and the forehead (Figure 4). They are coiled glands lying deep in the dermis, with the duct rising up to a pore on the skin surface, where the sweat is released. This type of sweat, released by exocytosis, is hypotonic and composed mostly of water, with some salt, antibodies, traces of metabolic waste, and dermicidin, an antimicrobial peptide. Eccrine glands are a primary component of thermoregulation in humans and thus help to maintain homeostasis.

An apocrine sweat gland is usually associated with hair follicles in densely hairy areas, such as armpits and genital regions. Apocrine sweat glands are larger than eccrine sweat glands and lie deeper in the dermis, sometimes even reaching the hypodermis, with the duct normally emptying into the hair follicle. In addition to water and salts, apocrine sweat includes organic compounds that make the sweat thicker and subject to bacterial decomposition and subsequent smell. The release of this sweat is under both nervous and hormonal control, and plays a role in the poorly understood human pheromone response. Most commercial antiperspirants use an aluminum-based compound as their primary active ingredient to stop sweat. When the antiperspirant enters the sweat gland duct, the aluminum-based compounds precipitate due to a change in pH and form a physical block in the duct, which prevents sweat from coming out of the pore.
A sebaceous gland is a type of oil gland that is found all over the body and helps to lubricate and waterproof the skin and hair. Most sebaceous glands are associated with hair follicles. They generate and excrete sebum, a mixture of lipids, onto the skin surface, thereby naturally lubricating the dry and dead layer of keratinized cells of the stratum corneum, keeping it pliable. The fatty acids of sebum also have antibacterial properties, and prevent water loss from the skin in low-humidity environments. The secretion of sebum is stimulated by hormones, many of which do not become active until puberty. Thus, sebaceous glands are relatively inactive during childhood.

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

Hair follicles originate in the epidermis and have many different parts.

The slide shows a cross-section of a hair follicle. Basal cells of the hair matrix in the center differentiate into cells of the inner root sheath. Basal cells at the base of the hair root form the outer root sheath. LM × 4. (credit: modification of work by “kilbad”/Wikimedia Commons)

The nail is an accessory structure of the integumentary system.

Eccrine glands are coiled glands in the dermis that release sweat that is mostly water.

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. The skin’s accessory structures encompass hair, nails, sweat glands, and sebaceous glands.
  2. Hair is comprised of dead keratinized cells, deriving its color from melanin pigments.
  3. Nails, similarly made of dead keratinized cells, serve as protective shields for the fingertips and toes, guarding against mechanical damage.
  4. Sweat glands and sebaceous glands are integral components as well.
  5. Sweat glands produce sweat, while sebaceous glands secrete sebum.
  6. These fluids play crucial roles in maintaining homeostasis.
  7. Sweat aids in cooling the body surface during overheating and facilitates the excretion of small amounts of metabolic waste.
  8. On the other hand, sebum acts as a natural moisturizer, contributing to the health of the outer keratin layer by preventing it from becoming dry and flaky.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!