Module 2: The Chemical Level of Organization

Lesson 2: Chemical Bonds

Liên Kết Hóa Học

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module The Chemical Level of Organization.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: The Chemical Level of Organization

compound that releases hydrogen ions (H+) in solution
activation energy
amount of energy greater than the energy contained in the reactants, which must be overcome for a reaction to proceed
adenosine triphosphate (ATP)
nucleotide containing ribose and an adenine base that is essential in energy transfer
amino acid
building block of proteins; characterized by an amino and carboxyl functional groups and a variable side-chain
atom with a negative charge
smallest unit of an element that retains the unique properties of that element
atomic number
number of protons in the nucleus of an atom
compound that accepts hydrogen ions (H+) in solution
electrical force linking atoms
solution containing a weak acid or a weak base that opposes wide fluctuations in the pH of body fluids
class of organic compounds built from sugars, molecules containing carbon, hydrogen, and oxygen in a 1-2-1 ratio
substance that increases the rate of a chemical reaction without itself being changed in the process
atom with a positive charge
chemical energy
form of energy that is absorbed as chemical bonds form, stored as they are maintained, and released as they are broken
liquid mixture in which the solute particles consist of clumps of molecules large enough to scatter light
substance composed of two or more different elements joined by chemical bonds
number of particles within a given space
covalent bond
chemical bond in which two atoms share electrons, thereby completing their valence shells
decomposition reaction
type of catabolic reaction in which one or more bonds within a larger molecule are broken, resulting in the release of smaller molecules or atoms
change in the structure of a molecule through physical or chemical means
deoxyribonucleic acid (DNA)
deoxyribose-containing nucleotide that stores genetic information
pair of carbohydrate monomers bonded by dehydration synthesis via a glycosidic bond
disulfide bond
covalent bond formed within a polypeptide between sulfide groups of sulfur-containing amino acids, for example, cysteine
subatomic particle having a negative charge and nearly no mass; found orbiting the atom’s nucleus
electron shell
area of space a given distance from an atom’s nucleus in which electrons are grouped
substance that cannot be created or broken down by ordinary chemical means
protein or RNA that catalyzes chemical reactions
exchange reaction
type of chemical reaction in which bonds are both formed and broken, resulting in the transfer of components
functional group
group of atoms linked by strong covalent bonds that tends to behave as a distinct unit in chemical reactions with other atoms
hydrogen bond
dipole-dipole bond in which a hydrogen atom covalently bonded to an electronegative atom is weakly attracted to a second electronegative atom
inorganic compound
substance that does not contain both carbon and hydrogen
atom with an overall positive or negative charge
ionic bond
attraction between an anion and a cation
one of the variations of an element in which the number of neutrons differ from each other
kinetic energy
energy that matter possesses because of its motion
class of nonpolar organic compounds built from hydrocarbons and distinguished by the fact that they are not soluble in water
large molecule formed by covalent bonding
mass number
sum of the number of protons and neutrons in the nucleus of an atom
physical substance; that which occupies space and has mass
two or more atoms covalently bonded together
monomer of carbohydrate; also known as a simple sugar
heavy subatomic particle having no electrical charge and found in the atom’s nucleus
class of organic compounds composed of one or more phosphate groups, a pentose sugar, and a base
organic compound
substance that contains both carbon and hydrogen
peptide bond
covalent bond formed by dehydration synthesis between two amino acids
periodic table of the elements
arrangement of the elements in a table according to their atomic number; elements having similar properties because of their electron arrangements compose columns in the table, while elements having the same number of valence shells compose rows in the table
negative logarithm of the hydrogen ion (H+) concentration of a solution
a lipid compound in which a phosphate group is combined with a diglyceride
addition of one or more phosphate groups to an organic compound
polar molecule
molecule with regions that have opposite charges resulting from uneven numbers of electrons in the nuclei of the atoms participating in the covalent bond
compound consisting of more than two carbohydrate monomers bonded by dehydration synthesis via glycosidic bonds
potential energy
stored energy matter possesses because of the positioning or structure of its components
one or more substances produced by a chemical reaction
lipid compound derived from fatty acid chains and important in regulating several body processes
class of organic compounds that are composed of many amino acids linked together by peptide bonds
heavy subatomic particle having a positive charge and found in the atom’s nucleus
nitrogen-containing base with a double ring structure; adenine and guanine
nitrogen-containing base with a single ring structure; cytosine, thiamine, and uracil
radioactive isotope
unstable, heavy isotope that gives off subatomic particles, or electromagnetic energy, as it decays; also called radioisotopes
one or more substances that enter into the reaction
ribonucleic acid (RNA)
ribose-containing nucleotide that helps manifest the genetic code as protein
homogeneous liquid mixture in which a solute is dissolved into molecules within a solvent
(also, sterol) lipid compound composed of four hydrocarbon rings bonded to a variety of other atoms and molecules
reactant in an enzymatic reaction
liquid mixture in which particles distributed in the liquid settle out over time
synthesis reaction
type of anabolic reaction in which two or more atoms or molecules bond, resulting in the formation of a larger molecule
lipid compound composed of a glycerol molecule bonded with three fatty acid chains
valence shell
outermost electron shell of an atom
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
Atoms separated by a great distance cannot link; rather, they must come close enough for the electrons in their valence shells to interact. But do atoms ever actually touch one another? Most physicists would say no, because the negatively charged electrons in their valence shells repel one another. No force within the human body—or anywhere in the natural world—is strong enough to overcome this electrical repulsion. So when you read about atoms linking together or colliding, bear in mind that the atoms are not merging in a physical sense.

Instead, atoms link by forming a chemical bond. A bond is a weak or strong electrical attraction that holds atoms in the same vicinity. The new grouping is typically more stable—less likely to react again—than its component atoms were when they were separate. A more or less stable grouping of two or more atoms held together by chemical bonds is called a molecule. The bonded atoms may be of the same element, as in the case of H2, which is called molecular hydrogen or hydrogen gas. When a molecule is made up of two or more atoms of different elements, it is called a chemical compound. Thus, a unit of water, or H2O, is a compound, as is a single molecule of the gas methane, or CH4.

Three types of chemical bonds are important in human physiology, because they hold together substances that are used by the body for critical aspects of homeostasis, signaling, and energy production, to name just a few important processes. These are ionic bonds, covalent bonds, and hydrogen bonds.
Recall that an atom typically has the same number of positively charged protons and negatively charged electrons. As long as this situation remains, the atom is electrically neutral. But when an atom participates in a chemical reaction that results in the donation or acceptance of one or more electrons, the atom will then become positively or negatively charged. This happens frequently for most atoms in order to have a full valence shell, as described previously. This can happen either by gaining electrons to fill a shell that is more than half-full, or by giving away electrons to empty a shell that is less than half-full, thereby leaving the next smaller electron shell as the new, full, valence shell. An atom that has an electrical charge—whether positive or negative—is an ion.

Potassium (K), for instance, is an important element in all body cells. Its atomic number is 19. It has just one electron in its valence shell. This characteristic makes potassium highly likely to participate in chemical reactions in which it donates one electron. (It is easier for potassium to donate one electron than to gain seven electrons.) The loss will cause the positive charge of potassium’s protons to be more influential than the negative charge of potassium’s electrons. In other words, the resulting potassium ion will be slightly positive. A potassium ion is written K+, indicating that it has lost a single electron. A positively charged ion is known as a cation.

Now consider fluorine (F), a component of bones and teeth. Its atomic number is nine, and it has seven electrons in its valence shell. Thus, it is highly likely to bond with other atoms in such a way that fluorine accepts one electron (it is easier for fluorine to gain one electron than to donate seven electrons). When it does, its electrons will outnumber its protons by one, and it will have an overall negative charge. The ionized form of fluorine is called fluoride, and is written as F–. A negatively charged ion is known as an anion.

Atoms that have more than one electron to donate or accept will end up with stronger positive or negative charges. A cation that has donated two electrons has a net charge of +2. Using magnesium (Mg) as an example, this can be written Mg++ or Mg2+. An anion that has accepted two electrons has a net charge of –2. The ionic form of selenium (Se), for example, is typically written Se2–.

The opposite charges of cations and anions exert a moderately strong mutual attraction that keeps the atoms in close proximity forming an ionic bond. An ionic bond is an ongoing, close association between ions of opposite charge. The table salt you sprinkle on your food owes its existence to ionic bonding. As shown in Figure 1, sodium commonly donates an electron to chlorine, becoming the cation Na+. When chlorine accepts the electron, it becomes the chloride anion, Cl–. With their opposing charges, these two ions strongly attract each other.

Water is an essential component of life because it is able to break the ionic bonds in salts to free the ions. In fact, in biological fluids, most individual atoms exist as ions. These dissolved ions produce electrical charges within the body. The behavior of these ions produces the tracings of heart and brain function observed as waves on an electrocardiogram (EKG or ECG) or an electroencephalogram (EEG). The electrical activity that derives from the interactions of the charged ions is why they are also called electrolytes.
Unlike ionic bonds formed by the attraction between a cation’s positive charge and an anion’s negative charge, molecules formed by a covalent bond share electrons in a mutually stabilizing relationship. Like next-door neighbors whose kids hang out first at one home and then at the other, the atoms do not lose or gain electrons permanently. Instead, the electrons move back and forth between the elements. Because of the close sharing of pairs of electrons (one electron from each of two atoms), covalent bonds are stronger than ionic bonds.

A. Nonpolar Covalent Bonds

Figure 2 shows several common types of covalent bonds. Notice that the two covalently bonded atoms typically share just one or two electron pairs, though larger sharings are possible. The important concept to take from this is that in covalent bonds, electrons in the two atoms’ overlapping atomic orbitals are shared to fill the valence shells of both atoms, ultimately stabilizing both of the atoms involved. In a single covalent bond, a single electron pair is shared between two atoms, while in a double covalent bond, two pairs of electrons are shared between two atoms. There even are triple covalent bonds, where three electron pairs are shared between two atoms.

You can see that the covalent bonds shown in Figure 2 are balanced. The sharing of the negative electrons is relatively equal, as is the electrical pull of the positive protons in the nucleus of the atoms involved. This is why covalently bonded molecules that are electrically balanced in this way are described as nonpolar; that is, no region of the molecule is either more positive or more negative than any other.

B. Polar Covalent Bonds

Groups of legislators with completely opposite views on a particular issue are often described as “polarized” by news writers. In chemistry, a polar molecule is a molecule that contains regions that have opposite electrical charges. Polar molecules occur when atoms share electrons unequally, in polar covalent bonds.

The most familiar example of a polar molecule is water (Figure 3). The molecule has three parts: one atom of oxygen, the nucleus of which contains eight protons, and two hydrogen atoms, whose nuclei each contain only one proton. Because every proton exerts an identical positive charge, a nucleus that contains eight protons exerts a charge eight times greater than a nucleus that contains one proton. This means that the negatively charged electrons present in the water molecule are more strongly attracted to the oxygen nucleus than to the hydrogen nuclei. Each hydrogen atom’s single negative electron therefore migrates toward the oxygen atom, making the oxygen end of their bond slightly more negative than the hydrogen end of their bond.

What is true for the bonds is true for the water molecule as a whole; that is, the oxygen region has a slightly negative charge and the regions of the hydrogen atoms have a slightly positive charge. These charges are often referred to as “partial charges” because the strength of the charge is less than one full electron, as would occur in an ionic bond. As shown in Figure 3, regions of weak polarity are indicated with the Greek letter delta (δ) and a plus (+) or minus (–) sign.

Even though a single water molecule is unimaginably tiny, it has mass, and the opposing electrical charges on the molecule pull that mass in such a way that it creates a shape somewhat like a triangular tent (see Figure 7b). This dipole, with the positive charges at one end formed by the hydrogen atoms at the “bottom” of the tent and the negative charge at the opposite end (the oxygen atom at the “top” of the tent) makes the charged regions highly likely to interact with charged regions of other polar molecules. For human physiology, the resulting bond is one of the most important formed by water—the hydrogen bond.
A hydrogen bond is formed when a weakly positive hydrogen atom already bonded to one electronegative atom (for example, the oxygen in the water molecule) is attracted to another electronegative atom from another molecule. In other words, hydrogen bonds always include hydrogen that is already part of a polar molecule.

The most common example of hydrogen bonding in the natural world occurs between molecules of water. It happens before your eyes whenever two raindrops merge into a larger bead, or a creek spills into a river. Hydrogen bonding occurs because the weakly negative oxygen atom in one water molecule is attracted to the weakly positive hydrogen atoms of two other water molecules (Figure 4).

Water molecules also strongly attract other types of charged molecules as well as ions. This explains why “table salt,” for example, actually is a molecule called a “salt” in chemistry, which consists of equal numbers of positively-charged sodium (Na+) and negatively-charged chloride (Cl–), dissolves so readily in water, in this case forming dipole-ion bonds between the water and the electrically-charged ions (electrolytes). Water molecules also repel molecules with nonpolar covalent bonds, like fats, lipids, and oils. You can demonstrate this with a simple kitchen experiment: pour a teaspoon of vegetable oil, a compound formed by nonpolar covalent bonds, into a glass of water. Instead of instantly dissolving in the water, the oil forms a distinct bead because the polar water molecules repel the nonpolar oil.

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at

(a) Sodium readily donates the solitary electron in its valence shell to chlorine, which needs only one electron to have a full valence shell. (b) The opposite electrical charges of the resulting sodium cation and chloride anion result in the formation of a bond of attraction called an ionic bond. (c) The attraction of many sodium and chloride ions results in the formation of large groupings called crystals.

Notice that the bonds occur between the weakly positive charge on the hydrogen atoms and the weakly negative charge on the oxygen atoms. Hydrogen bonds are relatively weak, and therefore are indicated with a dotted (rather than a solid) line.

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
  1. Each moment of life, atoms of oxygen, carbon, hydrogen, and the other elements of the human body are making and breaking chemical bonds.
  2. Ions are charged atoms that form when an atom donates or accepts one or more negatively charged electrons.
  3. Cations, which contain a positive charge, are attracted to anions, which contain a negative charge.
  4. This attraction is called an ionic bond.
  5. In covalent bonds, the participating atoms do not lose or gain electrons, but rather share them.
  6. Molecules with nonpolar covalent bonds are electrically balanced, and have a linear three-dimensional shape.
  7. Molecules with polar covalent bonds have “poles”, which are regions of weakly positive and negative charge, and have a triangular three-dimensional shape.
  8. An atom of oxygen and two atoms of hydrogen form water molecules by means of polar covalent bonds.
  9. Hydrogen bonds link hydrogen atoms already participating in polar covalent bonds to anions or electronegative regions of other polar molecules.
  10. Hydrogen bonds link water molecules, resulting in the properties of water that are important to living things.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Notify of

Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!