Module 3: The Cellular Level of Organization

Lesson 7: Cellular Differentiation

Biệt Hóa Tế Bào

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module The Cellular Level of Organization.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: The Cellular Level of Organization

active transport
form of transport across the cell membrane that requires input of cellular energy
amphipathic
describes a molecule that exhibits a difference in polarity between its two ends, resulting in a difference in water solubility
anaphase
third stage of mitosis (and meiosis), during which sister chromatids separate into two new nuclear regions of a dividing cell
anticodon
consecutive sequence of three nucleotides on a tRNA molecule that is complementary to a specific codon on an mRNA molecule
autolysis
breakdown of cells by their own enzymatic action
autophagy
lysosomal breakdown of a cell’s own components
cell cycle
life cycle of a single cell, from its birth until its division into two new daughter cells
cell membrane
membrane surrounding all animal cells, composed of a lipid bilayer interspersed with various molecules; also known as plasma membrane
centriole
small, self-replicating organelle that provides the origin for microtubule growth and moves DNA during cell division
centromere
region of attachment for two sister chromatids
centrosome
cellular structure that organizes microtubules during cell division
channel protein
membrane-spanning protein that has an inner pore which allows the passage of one or more substances
checkpoint
progress point in the cell cycle during which certain conditions must be met in order for the cell to proceed to a subsequence phase
chromatin
substance consisting of DNA and associated proteins
chromosome
condensed version of chromatin
cilia
small appendage on certain cells formed by microtubules and modified for movement of materials across the cellular surface
cleavage furrow
contractile ring that forms around a cell during cytokinesis that pinches the cell into two halves
codon
consecutive sequence of three nucleotides on an mRNA molecule that corresponds to a specific amino acid
concentration gradient
difference in the concentration of a substance between two regions
cyclin
one of a group of proteins that function in the progression of the cell cycle
cyclin-dependent kinase (CDK)
one of a group of enzymes associated with cyclins that help them perform their functions
cytokinesis
final stage in cell division, where the cytoplasm divides to form two separate daughter cells
cytoplasm
internal material between the cell membrane and nucleus of a cell, mainly consisting of a water-based fluid called cytosol, within which are all the other organelles and cellular solute and suspended materials
cytoskeleton
“skeleton” of a cell; formed by rod-like proteins that support the cell’s shape and provide, among other functions, locomotive abilities
cytosol
clear, semi-fluid medium of the cytoplasm, made up mostly of water
diffusion
movement of a substance from an area of higher concentration to one of lower concentration
diploid
condition marked by the presence of a double complement of genetic material (two sets of chromosomes, one set inherited from each of two parents)
DNA polymerase
enzyme that functions in adding new nucleotides to a growing strand of DNA during DNA replication
DNA replication
process of duplicating a molecule of DNA
electrical gradient
difference in the electrical charge (potential) between two regions
endocytosis
import of material into the cell by formation of a membrane-bound vesicle
endoplasmic reticulum (ER)
cellular organelle that consists of interconnected membrane-bound tubules, which may or may not be associated with ribosomes (rough type or smooth type, respectively)
exocytosis
export of a substance out of a cell by formation of a membrane-bound vesicle
exon
one of the coding regions of an mRNA molecule that remain after splicing
extracellular fluid (ECF)
fluid exterior to cells; includes the interstitial fluid, blood plasma, and fluid found in other reservoirs in the body
facilitated diffusion
diffusion of a substance with the aid of a membrane protein
flagellum
appendage on certain cells formed by microtubules and modified for movement
G0 phase
phase of the cell cycle, usually entered from the G1 phase; characterized by long or permanent periods where the cell does not move forward into the DNA synthesis phase
G1 phase
first phase of the cell cycle, after a new cell is born
G2 phase
third phase of the cell cycle, after the DNA synthesis phase
gene
functional length of DNA that provides the genetic information necessary to build a protein
gene expression
active interpretation of the information coded in a gene to produce a functional gene product
genome
entire complement of an organism’s DNA; found within virtually every cell
glycocalyx
coating of sugar molecules that surrounds the cell membrane
glycoprotein
protein that has one or more carbohydrates attached
Golgi apparatus
cellular organelle formed by a series of flattened, membrane-bound sacs that functions in protein modification, tagging, packaging, and transport
helicase
enzyme that functions to separate the two DNA strands of a double helix during DNA replication
histone
family of proteins that associate with DNA in the nucleus to form chromatin
homologous
describes two copies of the same chromosome (not identical), one inherited from each parent
hydrophilic
describes a substance or structure attracted to water
hydrophobic
describes a substance or structure repelled by water
hypertonic
describes a solution concentration that is higher than a reference concentration
hypotonic
describes a solution concentration that is lower than a reference concentration
integral protein
membrane-associated protein that spans the entire width of the lipid bilayer
intermediate filament
type of cytoskeletal filament made of keratin, characterized by an intermediate thickness, and playing a role in resisting cellular tension
interphase
entire life cycle of a cell, excluding mitosis
interstitial fluid (IF)
fluid in the small spaces between cells not contained within blood vessels
intracellular fluid (ICF)
fluid in the cytosol of cells
intron
non-coding regions of a pre-mRNA transcript that may be removed during splicing
isotonic
describes a solution concentration that is the same as a reference concentration
kinetochore
region of a centromere where microtubules attach to a pair of sister chromatids
ligand
molecule that binds with specificity to a specific receptor molecule
lysosome
membrane-bound cellular organelle originating from the Golgi apparatus and containing digestive enzymes
messenger RNA (mRNA)
nucleotide molecule that serves as an intermediate in the genetic code between DNA and protein
metaphase
second stage of mitosis (and meiosis), characterized by the linear alignment of sister chromatids in the center of the cell
metaphase plate
linear alignment of sister chromatids in the center of the cell, which takes place during metaphase
microfilament
the thinnest of the cytoskeletal filaments; composed of actin subunits that function in muscle contraction and cellular structural support
microtubule
the thickest of the cytoskeletal filaments, composed of tubulin subunits that function in cellular movement and structural support
mitochondrion
one of the cellular organelles bound by a double lipid bilayer that function primarily in the production of cellular energy (ATP)
mitosis
division of genetic material, during which the cell nucleus breaks down and two new, fully functional, nuclei are formed
mitotic phase
phase of the cell cycle in which a cell undergoes mitosis
mitotic spindle
network of microtubules, originating from centrioles, that arranges and pulls apart chromosomes during mitosis
multipotent
describes the condition of being able to differentiate into different types of cells within a given cell lineage or small number of lineages, such as a red blood cell or white blood cell
mutation
change in the nucleotide sequence in a gene within a cell’s DNA
nuclear envelope
membrane that surrounds the nucleus; consisting of a double lipid-bilayer
nuclear pore
one of the small, protein-lined openings found scattered throughout the nuclear envelope
nucleolus
small region of the nucleus that functions in ribosome synthesis
nucleosome
unit of chromatin consisting of a DNA strand wrapped around histone proteins
nucleus
cell’s central organelle; contains the cell’s DNA
oligopotent
describes the condition of being more specialized than multipotency; the condition of being able to differentiate into one of a few possible cell types
organelle
any of several different types of membrane-enclosed specialized structures in the cell that perform specific functions for the cell
osmosis
diffusion of water molecules down their concentration gradient across a selectively permeable membrane
passive transport
form of transport across the cell membrane that does not require input of cellular energy
peripheral protein
membrane-associated protein that does not span the width of the lipid bilayer, but is attached peripherally to integral proteins, membrane lipids, or other components of the membrane
peroxisome
membrane-bound organelle that contains enzymes primarily responsible for detoxifying harmful substances
phagocytosis
endocytosis of large particles
pinocytosis
endocytosis of fluid
pluripotent
describes the condition of being able to differentiate into a large variety of cell types
polypeptide
chain of amino acids linked by peptide bonds
polyribosome
simultaneous translation of a single mRNA transcript by multiple ribosomes
promoter
region of DNA that signals transcription to begin at that site within the gene
prophase
first stage of mitosis (and meiosis), characterized by breakdown of the nuclear envelope and condensing of the chromatin to form chromosomes
proteome
full complement of proteins produced by a cell (determined by the cell’s specific gene expression)
reactive oxygen species (ROS)
a group of extremely reactive peroxides and oxygen-containing radicals that may contribute to cellular damage
receptor
protein molecule that contains a binding site for another specific molecule (called a ligand)
receptor-mediated endocytosis
endocytosis of ligands attached to membrane-bound receptors
ribosomal RNA (rRNA)
RNA that makes up the subunits of a ribosome
ribosome
cellular organelle that functions in protein synthesis
RNA polymerase
enzyme that unwinds DNA and then adds new nucleotides to a growing strand of RNA for the transcription phase of protein synthesis
S phase
stage of the cell cycle during which DNA replication occurs
selective permeability
feature of any barrier that allows certain substances to cross but excludes others
sister chromatid
one of a pair of identical chromosomes, formed during DNA replication
sodium-potassium pump
(also, Na+/K+ ATP-ase) membrane-embedded protein pump that uses ATP to move Na+ out of a cell and K+ into the cell
somatic cell
all cells of the body excluding gamete cells
spliceosome
complex of enzymes that serves to splice out the introns of a pre-mRNA transcript
splicing
the process of modifying a pre-mRNA transcript by removing certain, typically non-coding, regions
stem cell
cell that is oligo-, multi-, or pleuripotent that has the ability to produce additional stem cells rather than becoming further specialized
telophase
final stage of mitosis (and meiosis), preceding cytokinesis, characterized by the formation of two new daughter nuclei
totipotent
embryonic cells that have the ability to differentiate into any type of cell and organ in the body
transcription
process of producing an mRNA molecule that is complementary to a particular gene of DNA
transcription factor
one of the proteins that regulate the transcription of genes
transfer RNA (tRNA)
molecules of RNA that serve to bring amino acids to a growing polypeptide strand and properly place them into the sequence
translation
process of producing a protein from the nucleotide sequence code of an mRNA transcript
triplet
consecutive sequence of three nucleotides on a DNA molecule that, when transcribed into an mRNA codon, corresponds to a particular amino acid
unipotent
describes the condition of being committed to a single specialized cell type
vesicle
membrane-bound structure that contains materials within or outside of the cell
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
How does a complex organism such as a human develop from a single cell—a fertilized egg—into the vast array of cell types such as nerve cells, muscle cells, and epithelial cells that characterize the adult? Throughout development and adulthood, the process of cellular differentiation leads cells to assume their final morphology and physiology. Differentiation is the process by which unspecialized cells become specialized to carry out distinct functions.
A stem cell is an unspecialized cell that can divide without limit as needed and can, under specific conditions, differentiate into specialized cells. Stem cells are divided into several categories according to their potential to differentiate.

The first embryonic cells that arise from the division of the zygote are the ultimate stem cells; these stems cells are described as totipotent because they have the potential to differentiate into any of the cells needed to enable an organism to grow and develop.

The embryonic cells that develop from totipotent stem cells and are precursors to the fundamental tissue layers of the embryo are classified as pluripotent. A pluripotent stem cell is one that has the potential to differentiate into any type of human tissue but cannot support the full development of an organism. These cells then become slightly more specialized, and are referred to as multipotent cells.

A multipotent stem cell has the potential to differentiate into different types of cells within a given cell lineage or small number of lineages, such as a red blood cell or white blood cell.

Finally, multipotent cells can become further specialized oligopotent cells. An oligopotent stem cell is limited to becoming one of a few different cell types. In contrast, a unipotent cell is fully specialized and can only reproduce to generate more of its own specific cell type.

Stem cells are unique in that they can also continually divide and regenerate new stem cells instead of further specializing. There are different stem cells present at different stages of a human’s life. They include the embryonic stem cells of the embryo, fetal stem cells of the fetus, and adult stem cells in the adult. One type of adult stem cell is the epithelial stem cell, which gives rise to the keratinocytes in the multiple layers of epithelial cells in the epidermis of skin. Adult bone marrow has three distinct types of stem cells: hematopoietic stem cells, which give rise to red blood cells, white blood cells, and platelets (Figure 1); endothelial stem cells, which give rise to the endothelial cell types that line blood and lymph vessels; and mesenchymal stem cells, which give rise to the different types of muscle cells.
When a cell differentiates (becomes more specialized), it may undertake major changes in its size, shape, metabolic activity, and overall function. Because all cells in the body, beginning with the fertilized egg, contain the same DNA, how do the different cell types come to be so different? The answer is analogous to a movie script. The different actors in a movie all read from the same script, however, they are each only reading their own part of the script. Similarly, all cells contain the same full complement of DNA, but each type of cell only “reads” the portions of DNA that are relevant to its own function. In biology, this is referred to as the unique genetic expression of each cell.

In order for a cell to differentiate into its specialized form and function, it need only manipulate those genes (and thus those proteins) that will be expressed, and not those that will remain silent. The primary mechanism by which genes are turned “on” or “off” is through transcription factors. A transcription factor is one of a class of proteins that bind to specific genes on the DNA molecule and either promote or inhibit their transcription(Figure 2).

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

The process of hematopoiesis involves the differentiation of multipotent cells into blood and immune cells. The multipotent hematopoietic stem cells give rise to many different cell types, including the cells of the immune system and red blood cells.

While each body cell contains the organism’s entire genome, different cells regulate gene expression with the use of various transcription factors. Transcription factors are proteins that affect the binding of RNA polymerase to a particular gene on the DNA molecule.

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. One of the major areas of research in biology is that of how cells specialize to assume their unique structures and functions, since all cells essentially originate from a single fertilized egg.
  2. Cell differentiation is the process of cells becoming specialized as the body develops.
  3. A stem cell is an unspecialized cell that can divide without limit as needed and can, under specific conditions, differentiate into specialized cells.
  4. Stem cells are divided into several categories according to their potential to differentiate.
  5. While all somatic cells contain the exact same genome, different cell types only express some of those genes at any given time.
  6. These differences in gene expression ultimately dictate a cell’s unique morphological and physiological characteristics.
  7. The primary mechanism that determines which genes will be expressed and which ones will not is through the use of different transcription factor proteins.
  8. These proteins bind to DNA and promote or hinder the transcription of different genes.
  9. Through the action of these transcription factors, cells specialize into one of hundreds of different cell types in the human body.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!