Module 19: Metabolism and Nutrition

Lesson 5: Metabolic States of the Body

Các Trạng Thái Trao Đổi Chất Của Cơ Thể

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module Metabolism and Nutrition.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: Metabolism and Nutrition

absorptive state
also called the fed state; the metabolic state occurring during the first few hours after ingesting food in which the body is digesting food and absorbing the nutrients
acetyl coenzyme A (acetyl CoA)
starting molecule of the Krebs cycle
anabolic hormones
hormones that stimulate the synthesis of new, larger molecules
anabolic reactions
reactions that build smaller molecules into larger molecules
ATP synthase
protein pore complex that creates ATP
basal metabolic rate (BMR)
amount of energy expended by the body at rest
beta (β)-hydroxybutyrate
primary ketone body produced in the body
beta (β)-oxidation
fatty acid oxidation
bile salts
salts that are released from the liver in response to lipid ingestion and surround the insoluble triglycerides to aid in their conversion to monoglycerides and free fatty acids
biosynthesis reactions
reactions that create new molecules, also called anabolic reactions
body mass index (BMI)
relative amount of body weight compared to the overall height; a BMI ranging from 18–24.9 is considered normal weight, 25–29.9 is considered overweight, and greater than 30 is considered obese
calorie
amount of heat it takes to raise 1 kg (1000 g) of water by 1 °C
catabolic hormones
hormones that stimulate the breakdown of larger molecules
catabolic reactions
reactions that break down larger molecules into their constituent parts
cellular respiration
production of ATP from glucose oxidation via glycolysis, the Krebs cycle, and oxidative phosphorylation
cholecystokinin (CCK)
hormone that stimulates the release of pancreatic lipase and the contraction of the gallbladder to release bile salts
chylomicrons
vesicles containing cholesterol and triglycerides that transport lipids out of the intestinal cells and into the lymphatic and circulatory systems
chymotrypsin
pancreatic enzyme that digests protein
chymotrypsinogen
proenzyme that is activated by trypsin into chymotrypsin
citric acid cycle
also called the Krebs cycle or the tricarboxylic acid cycle; converts pyruvate into CO2 and high-energy FADH2, NADH, and ATP molecules
conduction
transfer of heat through physical contact
convection
transfer of heat between the skin and air or water
elastase
pancreatic enzyme that digests protein
electron transport chain (ETC)
ATP production pathway in which electrons are passed through a series of oxidation-reduction reactions that forms water and produces a proton gradient
energy-consuming phase
first phase of glycolysis, in which two molecules of ATP are necessary to start the reaction
energy-yielding phase
second phase of glycolysis, during which energy is produced
enterokinase
enzyme located in the wall of the small intestine that activates trypsin
evaporation
transfer of heat that occurs when water changes from a liquid to a gas
FADH2
high-energy molecule needed for glycolysis
fatty acid oxidation
breakdown of fatty acids into smaller chain fatty acids and acetyl CoA
flavin adenine dinucleotide (FAD)
coenzyme used to produce FADH2
glucokinase
cellular enzyme, found in the liver, which converts glucose into glucose-6-phosphate upon uptake into the cell
gluconeogenesis
process of glucose synthesis from pyruvate or other molecules
glucose-6-phosphate
phosphorylated glucose produced in the first step of glycolysis
glycogen
form that glucose assumes when it is stored
glycolysis
series of metabolic reactions that breaks down glucose into pyruvate and produces ATP
hexokinase
cellular enzyme, found in most tissues, that converts glucose into glucose-6-phosphate upon uptake into the cell
hydroxymethylglutaryl CoA (HMG CoA)
molecule created in the first step of the creation of ketone bodies from acetyl CoA
inactive proenzymes
forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine
insulin
hormone secreted by the pancreas that stimulates the uptake of glucose into the cells
ketone bodies
alternative source of energy when glucose is limited, created when too much acetyl CoA is created during fatty acid oxidation
Krebs cycle
also called the citric acid cycle or the tricarboxylic acid cycle, converts pyruvate into CO2 and high-energy FADH2, NADH, and ATP molecules
lipogenesis
synthesis of lipids that occurs in the liver or adipose tissues
lipolysis
breakdown of triglycerides into glycerol and fatty acids
metabolic rate
amount of energy consumed minus the amount of energy expended by the body
metabolism
sum of all catabolic and anabolic reactions that take place in the body
minerals
inorganic compounds required by the body to ensure proper function of the body
monoglyceride molecules
lipid consisting of a single fatty acid chain attached to a glycerol backbone
monosaccharide
smallest, monomeric sugar molecule
NADH
high-energy molecule needed for glycolysis
nicotinamide adenine dinucleotide (NAD)
coenzyme used to produce NADH
oxidation
loss of an electron
oxidation-reduction reaction
(also, redox reaction) pair of reactions in which an electron is passed from one molecule to another, oxidizing one and reducing the other
oxidative phosphorylation
process that converts high-energy NADH and FADH2 into ATP
pancreatic lipases
enzymes released from the pancreas that digest lipids in the diet
pepsin
enzyme that begins to break down proteins in the stomach
polysaccharides
complex carbohydrates made up of many monosaccharides
postabsorptive state
also called the fasting state; the metabolic state occurring after digestion when food is no longer the body’s source of energy and it must rely on stored glycogen
proteolysis
process of breaking proteins into smaller peptides
pyruvate
three-carbon end product of glycolysis and starting material that is converted into acetyl CoA that enters the Krebs cycle
radiation
transfer of heat via infrared waves
reduction
gaining of an electron
salivary amylase
digestive enzyme that is found in the saliva and begins the digestion of carbohydrates in the mouth
secretin
hormone released in the small intestine to aid in digestion
sodium bicarbonate
anion released into the small intestine to neutralize the pH of the food from the stomach
terminal electron acceptor
oxygen, the recipient of the free hydrogen at the end of the electron transport chain
thermoneutral
external temperature at which the body does not expend any energy for thermoregulation, about 84 °F
thermoregulation
process of regulating the temperature of the body
transamination
transfer of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle
tricarboxylic acid cycle (TCA)
also called the Krebs cycle or the citric acid cycle; converts pyruvate into CO2 and high-energy FADH2, NADH, and ATP molecules
triglycerides
lipids, or fats, consisting of three fatty acid chains attached to a glycerol backbone
trypsin
pancreatic enzyme that activates chymotrypsin and digests protein
trypsinogen
proenzyme form of trypsin
urea cycle
process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys
vitamins
organic compounds required by the body to perform biochemical reactions like metabolism and bone, cell, and tissue growth
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
You eat periodically throughout the day; however, your organs, especially the brain, need a continuous supply of glucose. How does the body meet this constant demand for energy? Your body processes the food you eat both to use immediately and, importantly, to store as energy for later demands. If there were no method in place to store excess energy, you would need to eat constantly in order to meet energy demands. Distinct mechanisms are in place to facilitate energy storage, and to make stored energy available during times of fasting and starvation.
The absorptive state, or the fed state, occurs after a meal when your body is digesting the food and absorbing the nutrients (anabolism exceeds catabolism). Digestion begins the moment you put food into your mouth, as the food is broken down into its constituent parts to be absorbed through the intestine. The digestion of carbohydrates begins in the mouth, whereas the digestion of proteins and fats begins in the stomach and small intestine. The constituent parts of these carbohydrates, fats, and proteins are transported across the intestinal wall and enter the bloodstream (sugars and amino acids) or the lymphatic system (fats). From the intestines, these systems transport them to the liver, adipose tissue, or muscle cells that will process and use, or store, the energy.

Depending on the amounts and types of nutrients ingested, the absorptive state can linger for up to 4 hours. The ingestion of food and the rise of glucose concentrations in the bloodstream stimulate pancreatic beta cells to release insulin into the bloodstream, where it initiates the absorption of blood glucose by liver hepatocytes, and by adipose and muscle cells. Once inside these cells, glucose is immediately converted into glucose-6-phosphate. By doing this, a concentration gradient is established where glucose levels are higher in the blood than in the cells. This allows for glucose to continue moving from the blood to the cells where it is needed. Insulin also stimulates the storage of glucose as glycogen in the liver and muscle cells where it can be used for later energy needs of the body. Insulin also promotes the synthesis of protein in muscle. As you will see, muscle protein can be catabolized and used as fuel in times of starvation.

If energy is exerted shortly after eating, the dietary fats and sugars that were just ingested will be processed and used immediately for energy. If not, the excess glucose is stored as glycogen in the liver and muscle cells, or as fat in adipose tissue; excess dietary fat is also stored as triglycerides in adipose tissues.

Figure 1 summarizes the metabolic processes occurring in the body during the absorptive state.
The postabsorptive state, or the fasting state, occurs when the food has been digested, absorbed, and stored. You commonly fast overnight, but skipping meals during the day puts your body in the postabsorptive state as well. During this state, the body must rely initially on stored glycogen. Glucose levels in the blood begin to drop as it is absorbed and used by the cells. In response to the decrease in glucose, insulin levels also drop. Glycogen and triglyceride storage slows. However, due to the demands of the tissues and organs, blood glucose levels must be maintained in the normal range of 80–120 mg/dL. In response to a drop in blood glucose concentration, the hormone glucagon is released from the alpha cells of the pancreas. Glucagon acts upon the liver cells, where it inhibits the synthesis of glycogen and stimulates the breakdown of stored glycogen back into glucose. This glucose is released from the liver to be used by the peripheral tissues and the brain. As a result, blood glucose levels begin to rise. Gluconeogenesis will also begin in the liver to replace the glucose that has been used by the peripheral tissues.

After ingestion of food, fats and proteins are processed as described previously; however, the glucose processing changes a bit. The peripheral tissues preferentially absorb glucose. The liver, which normally absorbs and processes glucose, will not do so after a prolonged fast. The gluconeogenesis that has been ongoing in the liver will continue after fasting to replace the glycogen stores that were depleted in the liver. After these stores have been replenished, excess glucose that is absorbed by the liver will be converted into triglycerides and fatty acids for long-term storage. Figure 2 summarizes the metabolic processes occurring in the body during the postabsorptive state.
When the body is deprived of nourishment for an extended period of time, it goes into “survival mode.” The first priority for survival is to provide enough glucose or fuel for the brain. The second priority is the conservation of amino acids for proteins. Therefore, the body uses ketones to satisfy the energy needs of the brain and other glucose-dependent organs, and to maintain proteins in the cells (see Figure 3). Because glucose levels are very low during starvation, glycolysis will shut off in cells that can use alternative fuels. For example, muscles will switch from using glucose to fatty acids as fuel. As previously explained, fatty acids can be converted into acetyl CoA and processed through the Krebs cycle to make ATP. Pyruvate, lactate, and alanine from muscle cells are not converted into acetyl CoA and used in the Krebs cycle, but are exported to the liver to be used in the synthesis of glucose. As starvation continues, and more glucose is needed, glycerol from fatty acids can be liberated and used as a source for gluconeogenesis.

After several days of starvation, ketone bodies become the major source of fuel for the heart and other organs. As starvation continues, fatty acids and triglyceride stores are used to create ketones for the body. This prevents the continued breakdown of proteins that serve as carbon sources for gluconeogenesis. Once these stores are fully depleted, proteins from muscles are released and broken down for glucose synthesis. Overall survival is dependent on the amount of fat and protein stored in the body.

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

During the absorptive state, the body digests food and absorbs the nutrients.

During the postabsorptive state, the body must rely on stored glycogen for energy.

Adenosine triphosphate (ATP) is the energy molecule of the cell. During catabolic reactions, ATP is created and energy is stored until needed during anabolic reactions.

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. There are three main metabolic states of the body: absorptive or fed, postabsorptive or fasting, and starvation.
  2. During any given day, your metabolism switches between absorptive and postabsorptive states.
  3. Starvation states happen very rarely in generally well-nourished individuals.
  4. When the body is fed, glucose, fats, and proteins are absorbed across the intestinal membrane and enter the bloodstream and lymphatic system to be used immediately for fuel.
  5. Any excess is stored for later fasting stages.
  6. As blood glucose levels rise, the pancreas releases insulin to stimulate the uptake of glucose by hepatocytes in the liver, muscle cells, and adipocytes, and to promote its conversion to glycogen.
  7. As the postabsorptive state begins, glucose levels drop, and there is a corresponding drop in insulin levels.
  8. Falling glucose levels trigger the pancreas to release glucagon to turn off glycogen synthesis in the liver and stimulate its breakdown into glucose.
  9. The glucose is released into the bloodstream to serve as a fuel source for cells throughout the body.
  10. If glycogen stores are depleted during fasting, alternative sources, including fatty acids and proteins, can be metabolized and used as fuel.
  11. When the body once again enters the absorptive state after fasting, fats and proteins are digested and used to replenish fat and protein stores, whereas glucose is processed and used first to replenish the glycogen stores in the peripheral tissues, then in the liver.
  12. If the fast is not broken and starvation begins to set in, during the initial days, glucose produced from gluconeogenesis is still used by the brain and organs.
  13. After a few days, however, ketone bodies are created from fats and serve as the preferential fuel source for the heart and other organs, so that the brain can still use glucose.
  14. Once these stores are depleted, proteins will be catabolized first from the organs with fast turnover, such as the intestinal lining.
  15. Muscle will be spared to prevent the wasting of muscle tissue.
  16. However, these proteins will be used if alternative stores are not available.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!