Module 19: Metabolism and Nutrition

Lesson 3: Lipid Metabolism

Chuyển Hóa Lipid

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module Metabolism and Nutrition.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: Metabolism and Nutrition

absorptive state
also called the fed state; the metabolic state occurring during the first few hours after ingesting food in which the body is digesting food and absorbing the nutrients
acetyl coenzyme A (acetyl CoA)
starting molecule of the Krebs cycle
anabolic hormones
hormones that stimulate the synthesis of new, larger molecules
anabolic reactions
reactions that build smaller molecules into larger molecules
ATP synthase
protein pore complex that creates ATP
basal metabolic rate (BMR)
amount of energy expended by the body at rest
beta (β)-hydroxybutyrate
primary ketone body produced in the body
beta (β)-oxidation
fatty acid oxidation
bile salts
salts that are released from the liver in response to lipid ingestion and surround the insoluble triglycerides to aid in their conversion to monoglycerides and free fatty acids
biosynthesis reactions
reactions that create new molecules, also called anabolic reactions
body mass index (BMI)
relative amount of body weight compared to the overall height; a BMI ranging from 18–24.9 is considered normal weight, 25–29.9 is considered overweight, and greater than 30 is considered obese
calorie
amount of heat it takes to raise 1 kg (1000 g) of water by 1 °C
catabolic hormones
hormones that stimulate the breakdown of larger molecules
catabolic reactions
reactions that break down larger molecules into their constituent parts
cellular respiration
production of ATP from glucose oxidation via glycolysis, the Krebs cycle, and oxidative phosphorylation
cholecystokinin (CCK)
hormone that stimulates the release of pancreatic lipase and the contraction of the gallbladder to release bile salts
chylomicrons
vesicles containing cholesterol and triglycerides that transport lipids out of the intestinal cells and into the lymphatic and circulatory systems
chymotrypsin
pancreatic enzyme that digests protein
chymotrypsinogen
proenzyme that is activated by trypsin into chymotrypsin
citric acid cycle
also called the Krebs cycle or the tricarboxylic acid cycle; converts pyruvate into CO2 and high-energy FADH2, NADH, and ATP molecules
conduction
transfer of heat through physical contact
convection
transfer of heat between the skin and air or water
elastase
pancreatic enzyme that digests protein
electron transport chain (ETC)
ATP production pathway in which electrons are passed through a series of oxidation-reduction reactions that forms water and produces a proton gradient
energy-consuming phase
first phase of glycolysis, in which two molecules of ATP are necessary to start the reaction
energy-yielding phase
second phase of glycolysis, during which energy is produced
enterokinase
enzyme located in the wall of the small intestine that activates trypsin
evaporation
transfer of heat that occurs when water changes from a liquid to a gas
FADH2
high-energy molecule needed for glycolysis
fatty acid oxidation
breakdown of fatty acids into smaller chain fatty acids and acetyl CoA
flavin adenine dinucleotide (FAD)
coenzyme used to produce FADH2
glucokinase
cellular enzyme, found in the liver, which converts glucose into glucose-6-phosphate upon uptake into the cell
gluconeogenesis
process of glucose synthesis from pyruvate or other molecules
glucose-6-phosphate
phosphorylated glucose produced in the first step of glycolysis
glycogen
form that glucose assumes when it is stored
glycolysis
series of metabolic reactions that breaks down glucose into pyruvate and produces ATP
hexokinase
cellular enzyme, found in most tissues, that converts glucose into glucose-6-phosphate upon uptake into the cell
hydroxymethylglutaryl CoA (HMG CoA)
molecule created in the first step of the creation of ketone bodies from acetyl CoA
inactive proenzymes
forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine
insulin
hormone secreted by the pancreas that stimulates the uptake of glucose into the cells
ketone bodies
alternative source of energy when glucose is limited, created when too much acetyl CoA is created during fatty acid oxidation
Krebs cycle
also called the citric acid cycle or the tricarboxylic acid cycle, converts pyruvate into CO2 and high-energy FADH2, NADH, and ATP molecules
lipogenesis
synthesis of lipids that occurs in the liver or adipose tissues
lipolysis
breakdown of triglycerides into glycerol and fatty acids
metabolic rate
amount of energy consumed minus the amount of energy expended by the body
metabolism
sum of all catabolic and anabolic reactions that take place in the body
minerals
inorganic compounds required by the body to ensure proper function of the body
monoglyceride molecules
lipid consisting of a single fatty acid chain attached to a glycerol backbone
monosaccharide
smallest, monomeric sugar molecule
NADH
high-energy molecule needed for glycolysis
nicotinamide adenine dinucleotide (NAD)
coenzyme used to produce NADH
oxidation
loss of an electron
oxidation-reduction reaction
(also, redox reaction) pair of reactions in which an electron is passed from one molecule to another, oxidizing one and reducing the other
oxidative phosphorylation
process that converts high-energy NADH and FADH2 into ATP
pancreatic lipases
enzymes released from the pancreas that digest lipids in the diet
pepsin
enzyme that begins to break down proteins in the stomach
polysaccharides
complex carbohydrates made up of many monosaccharides
postabsorptive state
also called the fasting state; the metabolic state occurring after digestion when food is no longer the body’s source of energy and it must rely on stored glycogen
proteolysis
process of breaking proteins into smaller peptides
pyruvate
three-carbon end product of glycolysis and starting material that is converted into acetyl CoA that enters the Krebs cycle
radiation
transfer of heat via infrared waves
reduction
gaining of an electron
salivary amylase
digestive enzyme that is found in the saliva and begins the digestion of carbohydrates in the mouth
secretin
hormone released in the small intestine to aid in digestion
sodium bicarbonate
anion released into the small intestine to neutralize the pH of the food from the stomach
terminal electron acceptor
oxygen, the recipient of the free hydrogen at the end of the electron transport chain
thermoneutral
external temperature at which the body does not expend any energy for thermoregulation, about 84 °F
thermoregulation
process of regulating the temperature of the body
transamination
transfer of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle
tricarboxylic acid cycle (TCA)
also called the Krebs cycle or the citric acid cycle; converts pyruvate into CO2 and high-energy FADH2, NADH, and ATP molecules
triglycerides
lipids, or fats, consisting of three fatty acid chains attached to a glycerol backbone
trypsin
pancreatic enzyme that activates chymotrypsin and digests protein
trypsinogen
proenzyme form of trypsin
urea cycle
process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys
vitamins
organic compounds required by the body to perform biochemical reactions like metabolism and bone, cell, and tissue growth
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
Fats (or triglycerides) within the body are ingested as food or synthesized by adipocytes or hepatocytes from carbohydrate precursors (Figure 1). Lipid metabolism entails the oxidation of fatty acids to either generate energy or synthesize new lipids from smaller constituent molecules. Lipid metabolism is associated with carbohydrate metabolism, as products of glucose (such as acetyl CoA) can be converted into lipids.

Lipid metabolism begins in the intestine where ingested triglycerides are broken down into smaller chain fatty acids and subsequently into monoglyceride molecules (see Figure 1b) by pancreatic lipases, enzymes that break down fats after they are emulsified by bile salts. When food reaches the small intestine in the form of chyme, a digestive hormone called cholecystokinin (CCK) is released by intestinal cells in the intestinal mucosa. CCK stimulates the release of pancreatic lipase from the pancreas and stimulates the contraction of the gallbladder to release stored bile salts into the intestine. CCK also travels to the brain, where it can act as a hunger suppressant.

Together, the pancreatic lipases and bile salts break down triglycerides into free fatty acids. These fatty acids can be transported across the intestinal membrane. However, once they cross the membrane, they are recombined to again form triglyceride molecules. Within the intestinal cells, these triglycerides are packaged along with cholesterol molecules in phospholipid vesicles called chylomicrons (Figure 2). The chylomicrons enable fats and cholesterol to move within the aqueous environment of your lymphatic and circulatory systems. Chylomicrons leave the enterocytes by exocytosis and enter the lymphatic system via lacteals in the villi of the intestine. From the lymphatic system, the chylomicrons are transported to the circulatory system. Once in the circulation, they can either go to the liver or be stored in fat cells (adipocytes) that comprise adipose (fat) tissue found throughout the body.
To obtain energy from fat, triglycerides must first be broken down by hydrolysis into their two principal components, fatty acids and glycerol. This process, called lipolysis, takes place in the cytoplasm. The resulting fatty acids are oxidized by β-oxidation into acetyl CoA, which is used by the Krebs cycle. The glycerol that is released from triglycerides after lipolysis directly enters the glycolysis pathway as DHAP. Because one triglyceride molecule yields three fatty acid molecules with as much as 16 or more carbons in each one, fat molecules yield more energy than carbohydrates and are an important source of energy for the human body. Triglycerides yield more than twice the energy per unit mass when compared to carbohydrates and proteins. Therefore, when glucose levels are low, triglycerides can be converted into acetyl CoA molecules and used to generate ATP through aerobic respiration.

The breakdown of fatty acids, called fatty acid oxidation or beta (β)-oxidation, begins in the cytoplasm, where fatty acids are converted into fatty acyl CoA molecules. This fatty acyl CoA combines with carnitine to create a fatty acyl carnitine molecule, which helps to transport the fatty acid across the mitochondrial membrane. Once inside the mitochondrial matrix, the fatty acyl carnitine molecule is converted back into fatty acyl CoA and then into acetyl CoA (Figure 3). The newly formed acetyl CoA enters the Krebs cycle and is used to produce ATP in the same way as acetyl CoA derived from pyruvate.
If excessive acetyl CoA is created from the oxidation of fatty acids and the Krebs cycle is overloaded and cannot handle it, the acetyl CoA is diverted to create ketone bodies. These ketone bodies can serve as a fuel source if glucose levels are too low in the body. Ketones serve as fuel in times of prolonged starvation or when patients suffer from uncontrolled diabetes and cannot utilize most of the circulating glucose. In both cases, fat stores are liberated to generate energy through the Krebs cycle and will generate ketone bodies when too much acetyl CoA accumulates.

In this ketone synthesis reaction, excess acetyl CoA is converted into hydroxymethylglutaryl CoA (HMG CoA). HMG CoA is a precursor of cholesterol and is an intermediate that is subsequently converted into β-hydroxybutyrate, the primary ketone body in the blood (Figure 4).
Organs that have classically been thought to be dependent solely on glucose, such as the brain, can actually use ketones as an alternative energy source. This keeps the brain functioning when glucose is limited. When ketones are produced faster than they can be used, they can be broken down into CO2 and acetone. The acetone is removed by exhalation. One symptom of ketogenesis is that the patient’s breath smells sweet like alcohol. This effect provides one way of telling if a person with diabetes is properly controlling the disease. The carbon dioxide produced can acidify the blood, leading to diabetic ketoacidosis, a dangerous condition in people with diabetes.

Ketones oxidize to produce energy for the brain. beta (β)-hydroxybutyrate is oxidized to acetoacetate and NADH is released. An HS-CoA molecule is added to acetoacetate, forming acetoacetyl CoA. The carbon within the acetoacetyl CoA that is not bonded to the CoA then detaches, splitting the molecule in two. This carbon then attaches to another free HS-CoA, resulting in two acetyl CoA molecules. These two acetyl CoA molecules are then processed through the Krebs cycle to generate energy (Figure 5).
When glucose levels are plentiful, the excess acetyl CoA generated by glycolysis can be converted into fatty acids, triglycerides, cholesterol, steroids, and bile salts. This process, called lipogenesis, creates lipids (fat) from the acetyl CoA and takes place in the cytoplasm of adipocytes (fat cells) and hepatocytes (liver cells). When you eat more glucose or carbohydrates than your body needs, your system uses acetyl CoA to turn the excess into fat. Although there are several metabolic sources of acetyl CoA, it is most commonly derived from glycolysis. Acetyl CoA availability is significant, because it initiates lipogenesis. Lipogenesis begins with acetyl CoA and advances by the subsequent addition of two carbon atoms from another acetyl CoA; this process is repeated until fatty acids are the appropriate length. Because this is a bond-creating anabolic process, ATP is consumed. However, the creation of triglycerides and lipids is an efficient way of storing the energy available in carbohydrates. Triglycerides and lipids, high-energy molecules, are stored in adipose tissue until they are needed.

Although lipogenesis occurs in the cytoplasm, the necessary acetyl CoA is created in the mitochondria and cannot be transported across the mitochondrial membrane. To solve this problem, pyruvate is converted into both oxaloacetate and acetyl CoA. Two different enzymes are required for these conversions. Oxaloacetate forms via the action of pyruvate carboxylase, whereas the action of pyruvate dehydrogenase creates acetyl CoA. Oxaloacetate and acetyl CoA combine to form citrate, which can cross the mitochondrial membrane and enter the cytoplasm. In the cytoplasm, citrate is converted back into oxaloacetate and acetyl CoA. Oxaloacetate is converted into malate and then into pyruvate. Pyruvate crosses back across the mitochondrial membrane to wait for the next cycle of lipogenesis. The acetyl CoA is converted into malonyl CoA that is used to synthesize fatty acids. Figure 6 summarizes the pathways of lipid metabolism.

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

A triglyceride molecule (a) breaks down into a monoglyceride (b).

Chylomicrons contain triglycerides, cholesterol molecules, and other apolipoproteins (protein molecules). They function to carry these water-insoluble molecules from the intestine, through the lymphatic system, and into the bloodstream, which carries the lipids to adipose tissue for storage.

During fatty acid oxidation, triglycerides can be broken down into acetyl CoA molecules and used for energy when glucose levels are low.

Excess acetyl CoA is diverted from the Krebs cycle to the ketogenesis pathway. This reaction occurs in the mitochondria of liver cells. The result is the production of β-hydroxybutyrate, the primary ketone body found in the blood.

When glucose is limited, ketone bodies can be oxidized to produce acetyl CoA to be used in the Krebs cycle to generate energy.

Lipids may follow one of several pathways during metabolism. Glycerol and fatty acids follow different pathways.

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. Lipids are available to the body from three sources.
  2. They can be ingested in the diet, stored in the adipose tissue of the body, or synthesized in the liver.
  3. Fats ingested in the diet are digested in the small intestine.
  4. The triglycerides are broken down into monoglycerides and free fatty acids, then imported across the intestinal mucosa.
  5. Once across, the triglycerides are resynthesized and transported to the liver or adipose tissue.
  6. Fatty acids are oxidized through fatty acid or beta-oxidation into two-carbon acetyl CoA molecules, which can then enter the Krebs cycle to generate ATP.
  7. If excess acetyl CoA is created and overloads the capacity of the Krebs cycle, the acetyl CoA can be used to synthesize ketone bodies.
  8. When glucose is limited, ketone bodies can be oxidized and used for fuel.
  9. Excess acetyl CoA generated from excess glucose or carbohydrate ingestion can be used for fatty acid synthesis or lipogenesis.
  10. Acetyl CoA is used to create lipids, triglycerides, steroid hormones, cholesterol, and bile salts.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!