Module 15: The Cardiovascular System: Blood Vessels and Circulation

Lesson 6: Circulatory Pathways: Systemic Arteries

Vòng Tuần Hoàn: Động Mạch Hệ Thống

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module The Cardiovascular System: Blood Vessels and Circulation.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: The Cardiovascular System: Blood Vessels and Circulation

abdominal aorta
portion of the aorta inferior to the aortic hiatus and superior to the common iliac arteries
adrenal artery
branch of the abdominal aorta; supplies blood to the adrenal (suprarenal) glands
adrenal vein
drains the adrenal or suprarenal glands that are immediately superior to the kidneys; the right adrenal vein enters the inferior vena cava directly and the left adrenal vein enters the left renal vein
anaphylactic shock
type of shock that follows a severe allergic reaction and results from massive vasodilation
angioblasts
stem cells that give rise to blood vessels
angiogenesis
development of new blood vessels from existing vessels
anterior cerebral artery
arises from the internal carotid artery; supplies the frontal lobe of the cerebrum
anterior communicating artery
anastomosis of the right and left internal carotid arteries; supplies blood to the brain
anterior tibial artery
branches from the popliteal artery; supplies blood to the anterior tibial region; becomes the dorsalis pedis artery
anterior tibial vein
forms from the dorsal venous arch; drains the area near the tibialis anterior muscle and leads to the popliteal vein
aorta
largest artery in the body, originating from the left ventricle and descending to the abdominal region where it bifurcates into the common iliac arteries at the level of the fourth lumbar vertebra; arteries originating from the aorta distribute blood to virtually all tissues of the body
aortic arch
arc that connects the ascending aorta to the descending aorta; ends at the intervertebral disk between the fourth and fifth thoracic vertebrae
aortic hiatus
opening in the diaphragm that allows passage of the thoracic aorta into the abdominal region where it becomes the abdominal aorta
aortic sinuses
small pockets in the ascending aorta near the aortic valve that are the locations of the baroreceptors (stretch receptors) and chemoreceptors that trigger a reflex that aids in the regulation of vascular homeostasis
arterial circle
(also, circle of Willis) anastomosis located at the base of the brain that ensures continual blood supply; formed from branches of the internal carotid and vertebral arteries; supplies blood to the brain
arteriole
(also, resistance vessel) very small artery that leads to a capillary
arteriovenous anastomosis
short vessel connecting an arteriole directly to a venule and bypassing the capillary beds
artery
blood vessel that conducts blood away from the heart; may be a conducting or distributing vessel
ascending aorta
initial portion of the aorta, rising from the left ventricle for a distance of approximately 5 cm
atrial reflex
mechanism for maintaining vascular homeostasis involving atrial baroreceptors: if blood is returning to the right atrium more rapidly than it is being ejected from the left ventricle, the atrial receptors will stimulate the cardiovascular centers to increase sympathetic firing and increase cardiac output until the situation is reversed; the opposite is also true
axillary artery
continuation of the subclavian artery as it penetrates the body wall and enters the axillary region; supplies blood to the region near the head of the humerus (humeral circumflex arteries); the majority of the vessel continues into the brachium and becomes the brachial artery
axillary vein
major vein in the axillary region; drains the upper limb and becomes the subclavian vein
azygos vein
originates in the lumbar region and passes through the diaphragm into the thoracic cavity on the right side of the vertebral column; drains blood from the intercostal veins, esophageal veins, bronchial veins, and other veins draining the mediastinal region; leads to the superior vena cava
basilar artery
formed from the fusion of the two vertebral arteries; sends branches to the cerebellum, brain stem, and the posterior cerebral arteries; the main blood supply to the brain stem
basilic vein
superficial vein of the arm that arises from the palmar venous arches, intersects with the median cubital vein, parallels the ulnar vein, and continues into the upper arm; along with the brachial vein, it leads to the axillary vein
blood colloidal osmotic pressure (BCOP)
pressure exerted by colloids suspended in blood within a vessel; a primary determinant is the presence of plasma proteins
blood flow
movement of blood through a vessel, tissue, or organ that is usually expressed in terms of volume per unit of time
blood hydrostatic pressure
force blood exerts against the walls of a blood vessel or heart chamber
blood islands
masses of developing blood vessels and formed elements from mesodermal cells scattered throughout the embryonic disc
blood pressure
force exerted by the blood against the wall of a vessel or heart chamber; can be described with the more generic term hydrostatic pressure
brachial artery
continuation of the axillary artery in the brachium; supplies blood to much of the brachial region; gives off several smaller branches that provide blood to the posterior surface of the arm in the region of the elbow; bifurcates into the radial and ulnar arteries at the coronoid fossa
brachial vein
deeper vein of the arm that forms from the radial and ulnar veins in the lower arm; leads to the axillary vein
brachiocephalic artery
single vessel located on the right side of the body; the first vessel branching from the aortic arch; gives rise to the right subclavian artery and the right common carotid artery; supplies blood to the head, neck, upper limb, and wall of the thoracic region
brachiocephalic vein
one of a pair of veins that form from a fusion of the external and internal jugular veins and the subclavian vein; subclavian, external and internal jugulars, vertebral, and internal thoracic veins lead to it; drains the upper thoracic region and flows into the superior vena cava
bronchial artery
systemic branch from the aorta that provides oxygenated blood to the lungs in addition to the pulmonary circuit
bronchial vein
drains the systemic circulation from the lungs and leads to the azygos vein
capacitance
ability of a vein to distend and store blood
capacitance vessels
veins
capillary
smallest of blood vessels where physical exchange occurs between the blood and tissue cells surrounded by interstitial fluid
capillary bed
network of 10–100 capillaries connecting arterioles to venules
capillary hydrostatic pressure (CHP)
force blood exerts against a capillary
cardiogenic shock
type of shock that results from the inability of the heart to maintain cardiac output
carotid sinuses
small pockets near the base of the internal carotid arteries that are the locations of the baroreceptors and chemoreceptors that trigger a reflex that aids in the regulation of vascular homeostasis
cavernous sinus
enlarged vein that receives blood from most of the other cerebral veins and the eye socket, and leads to the petrosal sinus
celiac trunk
(also, celiac artery) major branch of the abdominal aorta; gives rise to the left gastric artery, the splenic artery, and the common hepatic artery that forms the hepatic artery to the liver, the right gastric artery to the stomach, and the cystic artery to the gall bladder
cephalic vein
superficial vessel in the upper arm; leads to the axillary vein
cerebrovascular accident (CVA)
blockage of blood flow to the brain; also called a stroke
circle of Willis
(also, arterial circle) anastomosis located at the base of the brain that ensures continual blood supply; formed from branches of the internal carotid and vertebral arteries; supplies blood to the brain
circulatory shock
also simply called shock; a life-threatening medical condition in which the circulatory system is unable to supply enough blood flow to provide adequate oxygen and other nutrients to the tissues to maintain cellular metabolism
common carotid artery
right common carotid artery arises from the brachiocephalic artery, and the left common carotid arises from the aortic arch; gives rise to the external and internal carotid arteries; supplies the respective sides of the head and neck
common hepatic artery
branch of the celiac trunk that forms the hepatic artery, the right gastric artery, and the cystic artery
common iliac artery
branch of the aorta that leads to the internal and external iliac arteries
common iliac vein
one of a pair of veins that flows into the inferior vena cava at the level of L5; the left common iliac vein drains the sacral region; divides into external and internal iliac veins near the inferior portion of the sacroiliac joint
compliance
degree to which a blood vessel can stretch as opposed to being rigid
continuous capillary
most common type of capillary, found in virtually all tissues except epithelia and cartilage; contains very small gaps in the endothelial lining that permit exchange
cystic artery
branch of the common hepatic artery; supplies blood to the gall bladder
deep femoral artery
branch of the femoral artery; gives rise to the lateral circumflex arteries
deep femoral vein
drains blood from the deeper portions of the thigh and leads to the femoral vein
descending aorta
portion of the aorta that continues downward past the end of the aortic arch; subdivided into the thoracic aorta and the abdominal aorta
diastolic pressure
lower number recorded when measuring arterial blood pressure; represents the minimal value corresponding to the pressure that remains during ventricular relaxation
digital arteries
formed from the superficial and deep palmar arches; supply blood to the digits
digital veins
drain the digits and feed into the palmar arches of the hand and dorsal venous arch of the foot
dorsal arch
(also, arcuate arch) formed from the anastomosis of the dorsalis pedis artery and medial and plantar arteries; branches supply the distal portions of the foot and digits
dorsal venous arch
drains blood from digital veins and vessels on the superior surface of the foot
dorsalis pedis artery
forms from the anterior tibial artery; branches repeatedly to supply blood to the tarsal and dorsal regions of the foot
ductus arteriosus
shunt in the fetal pulmonary trunk that diverts oxygenated blood back to the aorta
ductus venosus
shunt that causes oxygenated blood to bypass the fetal liver on its way to the inferior vena cava
elastic artery
(also, conducting artery) artery with abundant elastic fibers located closer to the heart, which maintains the pressure gradient and conducts blood to smaller branches
esophageal artery
branch of the thoracic aorta; supplies blood to the esophagus
esophageal vein
drains the inferior portions of the esophagus and leads to the azygos vein
external carotid artery
arises from the common carotid artery; supplies blood to numerous structures within the face, lower jaw, neck, esophagus, and larynx
external elastic membrane
membrane composed of elastic fibers that separates the tunica media from the tunica externa; seen in larger arteries
external iliac artery
branch of the common iliac artery that leaves the body cavity and becomes a femoral artery; supplies blood to the lower limbs
external iliac vein
formed when the femoral vein passes into the body cavity; drains the legs and leads to the common iliac vein
external jugular vein
one of a pair of major veins located in the superficial neck region that drains blood from the more superficial portions of the head, scalp, and cranial regions, and leads to the subclavian vein
femoral artery
continuation of the external iliac artery after it passes through the body cavity; divides into several smaller branches, the lateral deep femoral artery, and the genicular artery; becomes the popliteal artery as it passes posterior to the knee
femoral circumflex vein
forms a loop around the femur just inferior to the trochanters; drains blood from the areas around the head and neck of the femur; leads to the femoral vein
femoral vein
drains the upper leg; receives blood from the great saphenous vein, the deep femoral vein, and the femoral circumflex vein; becomes the external iliac vein when it crosses the body wall
fenestrated capillary
type of capillary with pores or fenestrations in the endothelium that allow for rapid passage of certain small materials
fibular vein
drains the muscles and integument near the fibula and leads to the popliteal vein
filtration
in the cardiovascular system, the movement of material from a capillary into the interstitial fluid, moving from an area of higher pressure to lower pressure
foramen ovale
shunt that directly connects the right and left atria and helps to divert oxygenated blood from the fetal pulmonary circuit
genicular artery
branch of the femoral artery; supplies blood to the region of the knee
gonadal artery
branch of the abdominal aorta; supplies blood to the gonads or reproductive organs; also described as ovarian arteries or testicular arteries, depending upon the sex of the individual
gonadal vein
generic term for a vein draining a reproductive organ; may be either an ovarian vein or a testicular vein, depending on the sex of the individual
great cerebral vein
receives most of the smaller vessels from the inferior cerebral veins and leads to the straight sinus
great saphenous vein
prominent surface vessel located on the medial surface of the leg and thigh; drains the superficial portions of these areas and leads to the femoral vein
hemangioblasts
embryonic stem cells that appear in the mesoderm and give rise to both angioblasts and pluripotent stem cells
hemiazygos vein
smaller vein complementary to the azygos vein; drains the esophageal veins from the esophagus and the left intercostal veins, and leads to the brachiocephalic vein via the superior intercostal vein
hepatic artery proper
branch of the common hepatic artery; supplies systemic blood to the liver
hepatic portal system
specialized circulatory pathway that carries blood from digestive organs to the liver for processing before being sent to the systemic circulation
hepatic vein
drains systemic blood from the liver and flows into the inferior vena cava
hypertension
chronic and persistent blood pressure measurements of 140/90 mm Hg or above
hypervolemia
abnormally high levels of fluid and blood within the body
hypovolemia
abnormally low levels of fluid and blood within the body
hypovolemic shock
type of circulatory shock caused by excessive loss of blood volume due to hemorrhage or possibly dehydration
hypoxia
lack of oxygen supply to the tissues
inferior mesenteric artery
branch of the abdominal aorta; supplies blood to the distal segment of the large intestine and rectum
inferior phrenic artery
branch of the abdominal aorta; supplies blood to the inferior surface of the diaphragm
inferior vena cava
large systemic vein that drains blood from areas largely inferior to the diaphragm; empties into the right atrium
intercostal artery
branch of the thoracic aorta; supplies blood to the muscles of the thoracic cavity and vertebral column
intercostal vein
drains the muscles of the thoracic wall and leads to the azygos vein
internal carotid artery
arises from the common carotid artery and begins with the carotid sinus; goes through the carotid canal of the temporal bone to the base of the brain; combines with branches of the vertebral artery forming the arterial circle; supplies blood to the brain
internal elastic membrane
membrane composed of elastic fibers that separates the tunica intima from the tunica media; seen in larger arteries
internal iliac artery
branch from the common iliac arteries; supplies blood to the urinary bladder, walls of the pelvis, external genitalia, and the medial portion of the femoral region; in females, also provide blood to the uterus and vagina
internal iliac vein
drains the pelvic organs and integument; formed from several smaller veins in the region; leads to the common iliac vein
internal jugular vein
one of a pair of major veins located in the neck region that passes through the jugular foramen and canal, flows parallel to the common carotid artery that is more or less its counterpart; primarily drains blood from the brain, receives the superficial facial vein, and empties into the subclavian vein
internal thoracic artery
(also, mammary artery) arises from the subclavian artery; supplies blood to the thymus, pericardium of the heart, and the anterior chest wall
internal thoracic vein
(also, internal mammary vein) drains the anterior surface of the chest wall and leads to the brachiocephalic vein
interstitial fluid colloidal osmotic pressure (IFCOP)
pressure exerted by the colloids within the interstitial fluid
interstitial fluid hydrostatic pressure (IFHP)
force exerted by the fluid in the tissue spaces
ischemia
insufficient blood flow to the tissues
Korotkoff sounds
noises created by turbulent blood flow through the vessels
lateral circumflex artery
branch of the deep femoral artery; supplies blood to the deep muscles of the thigh and the ventral and lateral regions of the integument
lateral plantar artery
arises from the bifurcation of the posterior tibial arteries; supplies blood to the lateral plantar surfaces of the foot
left gastric artery
branch of the celiac trunk; supplies blood to the stomach
lumbar arteries
branches of the abdominal aorta; supply blood to the lumbar region, the abdominal wall, and spinal cord
lumbar veins
drain the lumbar portion of the abdominal wall and spinal cord; the superior lumbar veins drain into the azygos vein on the right or the hemiazygos vein on the left; blood from these vessels is returned to the superior vena cava rather than the inferior vena cava
lumen
interior of a tubular structure such as a blood vessel or a portion of the alimentary canal through which blood, chyme, or other substances travel
maxillary vein
drains blood from the maxillary region and leads to the external jugular vein
mean arterial pressure (MAP)
average driving force of blood to the tissues; approximated by taking diastolic pressure and adding 1/3 of pulse pressure
medial plantar artery
arises from the bifurcation of the posterior tibial arteries; supplies blood to the medial plantar surfaces of the foot
median antebrachial vein
vein that parallels the ulnar vein but is more medial in location; intertwines with the palmar venous arches
median cubital vein
superficial vessel located in the antecubital region that links the cephalic vein to the basilic vein in the form of a v; a frequent site for a blood draw
median sacral artery
continuation of the aorta into the sacrum
mediastinal artery
branch of the thoracic aorta; supplies blood to the mediastinum
metarteriole
short vessel arising from a terminal arteriole that branches to supply a capillary bed
microcirculation
blood flow through the capillaries
middle cerebral artery
another branch of the internal carotid artery; supplies blood to the temporal and parietal lobes of the cerebrum
middle sacral vein
drains the sacral region and leads to the left common iliac vein
muscular artery
(also, distributing artery) artery with abundant smooth muscle in the tunica media that branches to distribute blood to the arteriole network
myogenic response
constriction or dilation in the walls of arterioles in response to pressures related to blood flow; reduces high blood flow or increases low blood flow to help maintain consistent flow to the capillary network
nervi vasorum
small nerve fibers found in arteries and veins that trigger contraction of the smooth muscle in their walls
net filtration pressure (NFP)
force driving fluid out of the capillary and into the tissue spaces; equal to the difference of the capillary hydrostatic pressure and the blood colloidal osmotic pressure
neurogenic shock
type of shock that occurs with cranial or high spinal injuries that damage the cardiovascular centers in the medulla oblongata or the nervous fibers originating from this region
obstructive shock
type of shock that occurs when a significant portion of the vascular system is blocked
occipital sinus
enlarged vein that drains the occipital region near the falx cerebelli and flows into the left and right transverse sinuses, and also into the vertebral veins
ophthalmic artery
branch of the internal carotid artery; supplies blood to the eyes
ovarian artery
branch of the abdominal aorta; supplies blood to the ovary, uterine (Fallopian) tube, and uterus
ovarian vein
drains the ovary; the right ovarian vein leads to the inferior vena cava and the left ovarian vein leads to the left renal vein
palmar arches
superficial and deep arches formed from anastomoses of the radial and ulnar arteries; supply blood to the hand and digital arteries
palmar venous arches
drain the hand and digits, and feed into the radial and ulnar veins
parietal branches
(also, somatic branches) group of arterial branches of the thoracic aorta; includes those that supply blood to the thoracic cavity, vertebral column, and the superior surface of the diaphragm
perfusion
distribution of blood into the capillaries so the tissues can be supplied
pericardial artery
branch of the thoracic aorta; supplies blood to the pericardium
petrosal sinus
enlarged vein that receives blood from the cavernous sinus and flows into the internal jugular vein
phrenic vein
drains the diaphragm; the right phrenic vein flows into the inferior vena cava and the left phrenic vein leads to the left renal vein
plantar arch
formed from the anastomosis of the dorsalis pedis artery and medial and plantar arteries; branches supply the distal portions of the foot and digits
plantar veins
drain the foot and lead to the plantar venous arch
plantar venous arch
formed from the plantar veins; leads to the anterior and posterior tibial veins through anastomoses
popliteal artery
continuation of the femoral artery posterior to the knee; branches into the anterior and posterior tibial arteries
popliteal vein
continuation of the femoral vein behind the knee; drains the region behind the knee and forms from the fusion of the fibular and anterior and posterior tibial veins
posterior cerebral artery
branch of the basilar artery that forms a portion of the posterior segment of the arterial circle; supplies blood to the posterior portion of the cerebrum and brain stem
posterior communicating artery
branch of the posterior cerebral artery that forms part of the posterior portion of the arterial circle; supplies blood to the brain
posterior tibial artery
branch from the popliteal artery that gives rise to the fibular or peroneal artery; supplies blood to the posterior tibial region
posterior tibial vein
forms from the dorsal venous arch; drains the area near the posterior surface of the tibia and leads to the popliteal vein
precapillary sphincters
circular rings of smooth muscle that surround the entrance to a capillary and regulate blood flow into that capillary
pulmonary artery
one of two branches, left and right, that divides off from the pulmonary trunk and leads to smaller arterioles and eventually to the pulmonary capillaries
pulmonary circuit
system of blood vessels that provide gas exchange via a network of arteries, veins, and capillaries that run from the heart, through the body, and back to the lungs
pulmonary trunk
single large vessel exiting the right ventricle that divides to form the right and left pulmonary arteries
pulmonary veins
two sets of paired vessels, one pair on each side, that are formed from the small venules leading away from the pulmonary capillaries that flow into the left atrium
pulse
alternating expansion and recoil of an artery as blood moves through the vessel; an indicator of heart rate
pulse pressure
difference between the systolic and diastolic pressures
radial artery
formed at the bifurcation of the brachial artery; parallels the radius; gives off smaller branches until it reaches the carpal region where it fuses with the ulnar artery to form the superficial and deep palmar arches; supplies blood to the lower arm and carpal region
radial vein
parallels the radius and radial artery; arises from the palmar venous arches and leads to the brachial vein
reabsorption
in the cardiovascular system, the movement of material from the interstitial fluid into the capillaries
renal artery
branch of the abdominal aorta; supplies each kidney
renal vein
largest vein entering the inferior vena cava; drains the kidneys and leads to the inferior vena cava
resistance
any condition or parameter that slows or counteracts the flow of blood
respiratory pump
increase in the volume of the thorax during inhalation that decreases air pressure, enabling venous blood to flow into the thoracic region, then exhalation increases pressure, moving blood into the atria
right gastric artery
branch of the common hepatic artery; supplies blood to the stomach
sepsis
(also, septicemia) organismal-level inflammatory response to a massive infection
septic shock
(also, blood poisoning) type of shock that follows a massive infection resulting in organism-wide inflammation
sigmoid sinuses
enlarged veins that receive blood from the transverse sinuses; flow through the jugular foramen and into the internal jugular vein
sinusoid capillary
rarest type of capillary, which has extremely large intercellular gaps in the basement membrane in addition to clefts and fenestrations; found in areas such as the bone marrow and liver where passage of large molecules occurs
skeletal muscle pump
effect on increasing blood pressure within veins by compression of the vessel caused by the contraction of nearby skeletal muscle
small saphenous vein
located on the lateral surface of the leg; drains blood from the superficial regions of the lower leg and foot, and leads to the popliteal vein
sphygmomanometer
blood pressure cuff attached to a device that measures blood pressure
splenic artery
branch of the celiac trunk; supplies blood to the spleen
straight sinus
enlarged vein that drains blood from the brain; receives most of the blood from the great cerebral vein and flows into the left or right transverse sinus
subclavian artery
right subclavian arises from the brachiocephalic artery, whereas the left subclavian artery arises from the aortic arch; gives rise to the internal thoracic, vertebral, and thyrocervical arteries; supplies blood to the arms, chest, shoulders, back, and central nervous system
subclavian vein
located deep in the thoracic cavity; becomes the axillary vein as it enters the axillary region; drains the axillary and smaller local veins near the scapular region; leads to the brachiocephalic vein
subscapular vein
drains blood from the subscapular region and leads to the axillary vein
superior mesenteric artery
branch of the abdominal aorta; supplies blood to the small intestine (duodenum, jejunum, and ileum), the pancreas, and a majority of the large intestine
superior phrenic artery
branch of the thoracic aorta; supplies blood to the superior surface of the diaphragm
superior sagittal sinus
enlarged vein located midsagittally between the meningeal and periosteal layers of the dura mater within the falx cerebri; receives most of the blood drained from the superior surface of the cerebrum and leads to the inferior jugular vein and the vertebral vein
superior vena cava
large systemic vein; drains blood from most areas superior to the diaphragm; empties into the right atrium
systolic pressure
larger number recorded when measuring arterial blood pressure; represents the maximum value following ventricular contraction
temporal vein
drains blood from the temporal region and leads to the external jugular vein
testicular artery
branch of the abdominal aorta; will ultimately travel outside the body cavity to the testes and form one component of the spermatic cord
testicular vein
drains the testes and forms part of the spermatic cord; the right testicular vein empties directly into the inferior vena cava and the left testicular vein empties into the left renal vein
thoracic aorta
portion of the descending aorta superior to the aortic hiatus
thoroughfare channel
continuation of the metarteriole that enables blood to bypass a capillary bed and flow directly into a venule, creating a vascular shunt
thyrocervical artery
arises from the subclavian artery; supplies blood to the thyroid, the cervical region, the upper back, and shoulder
transient ischemic attack (TIA)
temporary loss of neurological function caused by a brief interruption in blood flow; also known as a mini-stroke
transverse sinuses
pair of enlarged veins near the lambdoid suture that drain the occipital, sagittal, and straight sinuses, and leads to the sigmoid sinuses
trunk
large vessel that gives rise to smaller vessels
tunica externa
(also, tunica adventitia) outermost layer or tunic of a vessel (except capillaries)
tunica intima
(also, tunica interna) innermost lining or tunic of a vessel
tunica media
middle layer or tunic of a vessel (except capillaries)
ulnar artery
formed at the bifurcation of the brachial artery; parallels the ulna; gives off smaller branches until it reaches the carpal region where it fuses with the radial artery to form the superficial and deep palmar arches; supplies blood to the lower arm and carpal region
ulnar vein
parallels the ulna and ulnar artery; arises from the palmar venous arches and leads to the brachial vein
umbilical arteries
pair of vessels that runs within the umbilical cord and carries fetal blood low in oxygen and high in waste to the placenta for exchange with maternal blood
umbilical vein
single vessel that originates in the placenta and runs within the umbilical cord, carrying oxygen- and nutrient-rich blood to the fetal heart
vasa vasorum
small blood vessels located within the walls or tunics of larger vessels that supply nourishment to and remove wastes from the cells of the vessels
vascular shock
type of shock that occurs when arterioles lose their normal muscular tone and dilate dramatically
vascular shunt
continuation of the metarteriole and thoroughfare channel that allows blood to bypass the capillary beds to flow directly from the arterial to the venous circulation
vascular tone
contractile state of smooth muscle in a blood vessel
vascular tubes
rudimentary blood vessels in a developing fetus
vasoconstriction
constriction of the smooth muscle of a blood vessel, resulting in a decreased vascular diameter
vasodilation
relaxation of the smooth muscle in the wall of a blood vessel, resulting in an increased vascular diameter
vasomotion
irregular, pulsating flow of blood through capillaries and related structures
vein
blood vessel that conducts blood toward the heart
venous reserve
volume of blood contained within systemic veins in the integument, bone marrow, and liver that can be returned to the heart for circulation, if needed
venule
small vessel leading from the capillaries to veins
vertebral artery
arises from the subclavian artery and passes through the vertebral foramen through the foramen magnum to the brain; joins with the internal carotid artery to form the arterial circle; supplies blood to the brain and spinal cord
vertebral vein
arises from the base of the brain and the cervical region of the spinal cord; passes through the intervertebral foramina in the cervical vertebrae; drains smaller veins from the cranium, spinal cord, and vertebrae, and leads to the brachiocephalic vein; counterpart of the vertebral artery
visceral branches
branches of the descending aorta that supply blood to the viscera
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
The aorta is the largest artery in the body (Figure 1). It arises from the left ventricle and eventually descends to the abdominal region, where it bifurcates at the level of the fourth lumbar vertebra into the two common iliac arteries. The aorta consists of the ascending aorta, the aortic arch, and the descending aorta, which passes through the diaphragm and a landmark that divides into the superior thoracic and inferior abdominal components. Arteries originating from the aorta ultimately distribute blood to virtually all tissues of the body. At the base of the aorta is the aortic semilunar valve that prevents backflow of blood into the left ventricle while the heart is relaxing. After exiting the heart, the ascending aorta moves in a superior direction for approximately 5 cm and ends at the sternal angle. Following this ascent, it reverses direction, forming a graceful arc to the left, called the aortic arch. The aortic arch descends toward the inferior portions of the body and ends at the level of the intervertebral disk between the fourth and fifth thoracic vertebrae. Beyond this point, the descending aorta continues close to the bodies of the vertebrae and passes through an opening in the diaphragm known as the aortic hiatus. Superior to the diaphragm, the aorta is called the thoracic aorta, and inferior to the diaphragm, it is called the abdominal aorta. The abdominal aorta terminates when it bifurcates into the two common iliac arteries at the level of the fourth lumbar vertebra. See Figure 1 for an illustration of the ascending aorta, the aortic arch, and the initial segment of the descending aorta plus major branches; Table 1 summarizes the structures of the aorta.
There are three major branches of the aortic arch: the brachiocephalic artery, the left common carotid artery, and the left subclavian (literally “under the clavicle”) artery. As you would expect based upon proximity to the heart, each of these vessels is classified as an elastic artery.

The brachiocephalic artery is located only on the right side of the body; there is no corresponding artery on the left. The brachiocephalic artery branches into the right subclavian artery and the right common carotid artery. The left subclavian and left common carotid arteries arise independently from the aortic arch but otherwise follow a similar pattern and distribution to the corresponding arteries on the right side (see Figure 2).

Each subclavian artery supplies blood to the arms, chest, shoulders, back, and central nervous system. It then gives rise to three major branches: the internal thoracic artery, the vertebral artery, and the thyrocervical artery. The internal thoracic artery, or mammary artery, supplies blood to the thymus, the pericardium of the heart, and the anterior chest wall. The vertebral artery passes through the vertebral foramen in the cervical vertebrae and then through the foramen magnum into the cranial cavity to supply blood to the brain and spinal cord. The paired vertebral arteries join together to form the large basilar artery at the base of the medulla oblongata. This is an example of an anastomosis. The subclavian artery also gives rise to the thyrocervical artery that provides blood to the thyroid, the cervical region of the neck, and the upper back and shoulder.

The common carotid artery divides into internal and external carotid arteries. The right common carotid artery arises from the brachiocephalic artery and the left common carotid artery arises directly from the aortic arch. The external carotid artery supplies blood to numerous structures within the face, lower jaw, neck, esophagus, and larynx. These branches include the lingual, facial, occipital, maxillary, and superficial temporal arteries. The internal carotid artery initially forms an expansion known as the carotid sinus, containing the carotid baroreceptors and chemoreceptors. Like their counterparts in the aortic sinuses, the information provided by these receptors is critical to maintaining cardiovascular homeostasis (see Figure 2).

The internal carotid arteries along with the vertebral arteries are the two primary suppliers of blood to the human brain. Given the central role and vital importance of the brain to life, it is critical that blood supply to this organ remains uninterrupted. Recall that blood flow to the brain is remarkably constant, with approximately 20 percent of blood flow directed to this organ at any given time. When blood flow is interrupted, even for just a few seconds, a transient ischemic attack (TIA), or mini-stroke, may occur, resulting in loss of consciousness or temporary loss of neurological function. In some cases, the damage may be permanent. Loss of blood flow for longer periods, typically between 3 and 4 minutes, will likely produce irreversible brain damage or a stroke, also called a cerebrovascular accident (CVA). The locations of the arteries in the brain not only provide blood flow to the brain tissue but also prevent interruption in the flow of blood. Both the carotid and vertebral arteries branch once they enter the cranial cavity, and some of these branches form a structure known as the arterial circle (or circle of Willis), an anastomosis that is remarkably like a traffic circle that sends off branches (in this case, arterial branches to the brain). As a rule, branches to the anterior portion of the cerebrum are normally fed by the internal carotid arteries; the remainder of the brain receives blood flow from branches associated with the vertebral arteries.

The internal carotid artery continues through the carotid canal of the temporal bone and enters the base of the brain through the carotid foramen where it gives rise to several branches (Figure 3 and Figure 4). One of these branches is the anterior cerebral artery that supplies blood to the frontal lobe of the cerebrum. Another branch, the middle cerebral artery, supplies blood to the temporal and parietal lobes, which are the most common sites of CVAs. The ophthalmic artery, the third major branch, provides blood to the eyes.

The right and left anterior cerebral arteries join together to form an anastomosis called the anterior communicating artery. The initial segments of the anterior cerebral arteries and the anterior communicating artery form the anterior portion of the arterial circle. The posterior portion of the arterial circle is formed by a left and a right posterior communicating artery that branches from the posterior cerebral artery, which arises from the basilar artery. It provides blood to the posterior portion of the cerebrum and brain stem. The basilar artery is an anastomosis that begins at the junction of the two vertebral arteries and sends branches to the cerebellum and brain stem. It flows into the posterior cerebral arteries. Table 2 summarizes the aortic arch branches, including the major branches supplying the brain.
The thoracic aorta begins at the level of vertebra T5 and continues through to the diaphragm at the level of T12, initially traveling within the mediastinum to the left of the vertebral column. As it passes through the thoracic region, the thoracic aorta gives rise to several branches, which are collectively referred to as visceral branches and parietal branches (Figure 5). Those branches that supply blood primarily to visceral organs are known as the visceral branches and include the bronchial arteries, pericardial arteries, esophageal arteries, and the mediastinal arteries, each named after the tissues it supplies. Each bronchial artery (typically two on the left and one on the right) supplies systemic blood to the lungs and visceral pleura, in addition to the blood pumped to the lungs for oxygenation via the pulmonary circuit. The bronchial arteries follow the same path as the respiratory branches, beginning with the bronchi and ending with the bronchioles. There is considerable, but not total, intermingling of the systemic and pulmonary blood at anastomoses in the smaller branches of the lungs. This may sound incongruous—that is, the mixing of systemic arterial blood high in oxygen with the pulmonary arterial blood lower in oxygen—but the systemic vessels also deliver nutrients to the lung tissue just as they do elsewhere in the body. The mixed blood drains into typical pulmonary veins, whereas the bronchial artery branches remain separate and drain into bronchial veins described later. Each pericardial artery supplies blood to the pericardium, the esophageal artery provides blood to the esophagus, and the mediastinal artery provides blood to the mediastinum. The remaining thoracic aorta branches are collectively referred to as parietal branches or somatic branches, and include the intercostal and superior phrenic arteries. Each intercostal artery provides blood to the muscles of the thoracic cavity and vertebral column. The superior phrenic artery provides blood to the superior surface of the diaphragm. Table 3 lists the arteries of the thoracic region.
After crossing through the diaphragm at the aortic hiatus, the thoracic aorta is called the abdominal aorta (see Figure 5). This vessel remains to the left of the vertebral column and is embedded in adipose tissue behind the peritoneal cavity. It formally ends at approximately the level of vertebra L4, where it bifurcates to form the common iliac arteries. Before this division, the abdominal aorta gives rise to several important branches. A single celiac trunk (artery) emerges and divides into the left gastric artery to supply blood to the stomach and esophagus, the splenic artery to supply blood to the spleen, and the common hepatic artery, which in turn gives rise to the hepatic artery proper to supply blood to the liver, the right gastric artery to supply blood to the stomach, the cystic artery to supply blood to the gall bladder, and several branches, one to supply blood to the duodenum and another to supply blood to the pancreas. Two additional single vessels arise from the abdominal aorta. These are the superior and inferior mesenteric arteries. The superior mesenteric artery arises approximately 2.5 cm after the celiac trunk and branches into several major vessels that supply blood to the small intestine (duodenum, jejunum, and ileum), the pancreas, and a majority of the large intestine. The inferior mesenteric artery supplies blood to the distal segment of the large intestine, including the rectum. It arises approximately 5 cm superior to the common iliac arteries.

In addition to these single branches, the abdominal aorta gives rise to several significant paired arteries along the way. These include the inferior phrenic arteries, the adrenal arteries, the renal arteries, the gonadal arteries, and the lumbar arteries. Each inferior phrenic artery is a counterpart of a superior phrenic artery and supplies blood to the inferior surface of the diaphragm. The adrenal artery supplies blood to the adrenal (suprarenal) glands and arises near the superior mesenteric artery. Each renal artery branches approximately 2.5 cm inferior to the superior mesenteric arteries and supplies a kidney. The right renal artery is longer than the left since the aorta lies to the left of the vertebral column and the vessel must travel a greater distance to reach its target. Renal arteries branch repeatedly to supply blood to the kidneys. Each gonadal artery supplies blood to the gonads, or reproductive organs, and is also described as either an ovarian artery or a testicular artery (internal spermatic), depending upon the sex of the individual. An ovarian artery supplies blood to an ovary, uterine (Fallopian) tube, and the uterus, and is located within the suspensory ligament of the uterus. It is considerably shorter than a testicular artery, which ultimately travels outside the body cavity to the testes, forming one component of the spermatic cord. The gonadal arteries arise inferior to the renal arteries and are generally retroperitoneal. The ovarian artery continues to the uterus where it forms an anastomosis with the uterine artery that supplies blood to the uterus. Both the uterine arteries and vaginal arteries, which distribute blood to the vagina, are branches of the internal iliac artery. The four paired lumbar arteries are the counterparts of the intercostal arteries and supply blood to the lumbar region, the abdominal wall, and the spinal cord. In some instances, a fifth pair of lumbar arteries emerges from the median sacral artery.

The aorta divides at approximately the level of vertebra L4 into a left and a right common iliac artery but continues as a small vessel, the median sacral artery, into the sacrum. The common iliac arteries provide blood to the pelvic region and ultimately to the lower limbs. They split into external and internal iliac arteries approximately at the level of the lumbar-sacral articulation. Each internal iliac artery sends branches to the urinary bladder, the walls of the pelvis, the external genitalia, and the medial portion of the femoral region. In females, they also provide blood to the uterus and vagina. The much larger external iliac artery supplies blood to each of the lower limbs. Figure 6 shows the distribution of the major branches of the aorta into the thoracic and abdominal regions. Figure 7 shows the distribution of the major branches of the common iliac arteries. Table 4 summarizes the major branches of the abdominal aorta.
As the subclavian artery exits the thorax into the axillary region, it is renamed the axillary artery. Although it does branch and supply blood to the region near the head of the humerus (via the humeral circumflex arteries), the majority of the vessel continues into the upper arm, or brachium, and becomes the brachial artery (Figure 8). The brachial artery supplies blood to much of the brachial region and divides at the elbow into several smaller branches, including the deep brachial arteries, which provide blood to the posterior surface of the arm, and the ulnar collateral arteries, which supply blood to the region of the elbow. As the brachial artery approaches the coronoid fossa, it bifurcates into the radial and ulnar arteries, which continue into the forearm, or antebrachium. The radial artery and ulnar artery parallel their namesake bones, giving off smaller branches until they reach the wrist, or carpal region. At this level, they fuse to form the superficial and deep palmar arches that supply blood to the hand, as well as the digital arteries that supply blood to the digits. Figure 9 shows the distribution of systemic arteries from the heart into the upper limb. Table 5 summarizes the arteries serving the upper limbs.
The external iliac artery exits the body cavity and enters the femoral region of the lower leg (Figure 10). As it passes through the body wall, it is renamed the femoral artery. It gives off several smaller branches as well as the lateral deep femoral artery that in turn gives rise to a lateral circumflex artery. These arteries supply blood to the deep muscles of the thigh as well as ventral and lateral regions of the integument. The femoral artery also gives rise to the genicular artery, which provides blood to the region of the knee. As the femoral artery passes posterior to the knee near the popliteal fossa, it is called the popliteal artery. The popliteal artery branches into the anterior and posterior tibial arteries.

The anterior tibial artery is located between the tibia and fibula, and supplies blood to the muscles and integument of the anterior tibial region. Upon reaching the tarsal region, it becomes the dorsalis pedis artery, which branches repeatedly and provides blood to the tarsal and dorsal regions of the foot. The posterior tibial artery provides blood to the muscles and integument on the posterior surface of the tibial region. The fibular or peroneal artery branches from the posterior tibial artery. It bifurcates and becomes the medial plantar artery and lateral plantar artery, providing blood to the plantar surfaces. There is an anastomosis with the dorsalis pedis artery, and the medial and lateral plantar arteries form two arches called the dorsal arch (also called the arcuate arch) and the plantar arch, which provide blood to the remainder of the foot and toes. Figure 11 shows the distribution of the major systemic arteries in the lower limb. Table 6 summarizes the major systemic arteries discussed in the text.

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

VesselDescription
AortaLargest artery in the body, originating from the left ventricle and descending to the abdominal region, where it bifurcates into the common iliac arteries at the level of the fourth lumbar vertebra; arteries originating from the aorta distribute blood to virtually all tissues of the body
Ascending aortaInitial portion of the aorta, rising superiorly from the left ventricle for a distance of approximately 5 cm
Aortic archGraceful arc to the left that connects the ascending aorta to the descending aorta; ends at the intervertebral disk between the fourth and fifth thoracic vertebrae
Descending aortaPortion of the aorta that continues inferiorly past the end of the aortic arch; subdivided into the thoracic aorta and the abdominal aorta
Thoracic aortaPortion of the descending aorta superior to the aortic hiatus
Abdominal aortaPortion of the aorta inferior to the aortic hiatus and superior to the common iliac arteries
VesselDescription
Brachiocephalic arterySingle vessel located on the right side of the body; the first vessel branching from the aortic arch; gives rise to the right subclavian artery and the right common carotid artery; supplies blood to the head, neck, upper limb, and wall of the thoracic region
Subclavian arteryThe right subclavian artery arises from the brachiocephalic artery while the left subclavian artery arises from the aortic arch; gives rise to the internal thoracic, vertebral, and thyrocervical arteries; supplies blood to the arms, chest, shoulders, back, and central nervous system
Internal thoracic arteryAlso called the mammary artery; arises from the subclavian artery; supplies blood to the thymus, pericardium of the heart, and anterior chest wall
Vertebral arteryArises from the subclavian artery and passes through the vertebral foramen through the foramen magnum to the brain; joins with the internal carotid artery to form the arterial circle; supplies blood to the brain and spinal cord
Thyrocervical arteryArises from the subclavian artery; supplies blood to the thyroid, the cervical region, the upper back, and shoulder
Common carotid arteryThe right common carotid artery arises from the brachiocephalic artery and the left common carotid artery arises from the aortic arch; each gives rise to the external and internal carotid arteries; supplies the respective sides of the head and neck
External carotid arteryArises from the common carotid artery; supplies blood to numerous structures within the face, lower jaw, neck, esophagus, and larynx
Internal carotid arteryArises from the common carotid artery and begins with the carotid sinus; goes through the carotid canal of the temporal bone to the base of the brain; combines with the branches of the vertebral artery, forming the arterial circle; supplies blood to the brain
Arterial circle or circle of WillisAn anastomosis located at the base of the brain that ensures continual blood supply; formed from the branches of the internal carotid and vertebral arteries; supplies blood to the brain
Anterior cerebral arteryArises from the internal carotid artery; supplies blood to the frontal lobe of the cerebrum
Middle cerebral arteryAnother branch of the internal carotid artery; supplies blood to the temporal and parietal lobes of the cerebrum
Ophthalmic arteryBranch of the internal carotid artery; supplies blood to the eyes
Anterior communicating arteryAn anastomosis of the right and left internal carotid arteries; supplies blood to the brain
Posterior communicating arteryBranches of the posterior cerebral artery that form part of the posterior portion of the arterial circle; supplies blood to the brain
Posterior cerebral arteryBranch of the basilar artery that forms a portion of the posterior segment of the arterial circle of Willis; supplies blood to the posterior portion of the cerebrum and brain stem
Basilar arteryFormed from the fusion of the two vertebral arteries; sends branches to the cerebellum, brain stem, and the posterior cerebral arteries; the main blood supply to the brain stem
VesselDescription
Visceral branchesA group of arterial branches of the thoracic aorta; supplies blood to the viscera (i.e., organs) of the thorax
Bronchial arterySystemic branch from the aorta that provides oxygenated blood to the lungs; this blood supply is in addition to the pulmonary circuit that brings blood for oxygenation
Pericardial arteryBranch of the thoracic aorta; supplies blood to the pericardium
Esophageal arteryBranch of the thoracic aorta; supplies blood to the esophagus
Mediastinal arteryBranch of the thoracic aorta; supplies blood to the mediastinum
Parietal branchesAlso called somatic branches, a group of arterial branches of the thoracic aorta; include those that supply blood to the thoracic wall, vertebral column, and the superior surface of the diaphragm
Intercostal arteryBranch of the thoracic aorta; supplies blood to the muscles of the thoracic cavity and vertebral column
Superior phrenic arteryBranch of the thoracic aorta; supplies blood to the superior surface of the diaphragm

VesselDescription
Celiac trunkAlso called the celiac artery; a major branch of the abdominal aorta; gives rise to the left gastric artery, the splenic artery, and the common hepatic artery that forms the hepatic artery to the liver, the right gastric artery to the stomach, and the cystic artery to the gall bladder
Left gastric arteryBranch of the celiac trunk; supplies blood to the stomach
Splenic arteryBranch of the celiac trunk; supplies blood to the spleen
Common hepatic arteryBranch of the celiac trunk that forms the hepatic artery, the right gastric artery, and the cystic artery
Hepatic artery properBranch of the common hepatic artery; supplies systemic blood to the liver
Right gastric arteryBranch of the common hepatic artery; supplies blood to the stomach
Cystic arteryBranch of the common hepatic artery; supplies blood to the gall bladder
Superior mesenteric arteryBranch of the abdominal aorta; supplies blood to the small intestine (duodenum, jejunum, and ileum), the pancreas, and a majority of the large intestine
Inferior mesenteric arteryBranch of the abdominal aorta; supplies blood to the distal segment of the large intestine and rectum
Inferior phrenic arteriesBranches of the abdominal aorta; supply blood to the inferior surface of the diaphragm
Adrenal arteryBranch of the abdominal aorta; supplies blood to the adrenal (suprarenal) glands
Renal arteryBranch of the abdominal aorta; supplies each kidney
Gonadal arteryBranch of the abdominal aorta; supplies blood to the gonads or reproductive organs; also described as ovarian arteries or testicular arteries, depending upon the sex of the individual
Ovarian arteryBranch of the abdominal aorta; supplies blood to ovary, uterine (Fallopian) tube, and uterus
Testicular arteryBranch of the abdominal aorta; ultimately travels outside the body cavity to the testes and forms one component of the spermatic cord
Lumbar arteriesBranches of the abdominal aorta; supply blood to the lumbar region, the abdominal wall, and spinal cord
Common iliac arteryBranch of the aorta that leads to the internal and external iliac arteries
Median sacral arteryContinuation of the aorta into the sacrum
Internal iliac arteryBranch from the common iliac arteries; supplies blood to the urinary bladder, walls of the pelvis, external genitalia, and the medial portion of the femoral region; in females, also provides blood to the uterus and vagina
External iliac arteryBranch of the common iliac artery that leaves the body cavity and becomes a femoral artery; supplies blood to the lower limbs
VesselDescription
Axillary arteryContinuation of the subclavian artery as it penetrates the body wall and enters the axillary region; supplies blood to the region near the head of the humerus (humeral circumflex arteries); the majority of the vessel continues into the brachium and becomes the brachial artery
Brachial arteryContinuation of the axillary artery in the brachium; supplies blood to much of the brachial region; gives off several smaller branches that provide blood to the posterior surface of the arm in the region of the elbow; bifurcates into the radial and ulnar arteries at the coronoid fossa
Radial arteryFormed at the bifurcation of the brachial artery; parallels the radius; gives off smaller branches until it reaches the carpal region where it fuses with the ulnar artery to form the superficial and deep palmar arches; supplies blood to the lower arm and carpal region
Ulnar arteryFormed at the bifurcation of the brachial artery; parallels the ulna; gives off smaller branches until it reaches the carpal region where it fuses with the radial artery to form the superficial and deep palmar arches; supplies blood to the lower arm and carpal region
Palmar arches (superficial and deep)Formed from anastomosis of the radial and ulnar arteries; supply blood to the hand and digital arteries
Digital arteriesFormed from the superficial and deep palmar arches; supply blood to the digits

VesselDescription
Femoral arteryContinuation of the external iliac artery after it passes through the body cavity; divides into several smaller branches, the lateral deep femoral artery, and the genicular artery; becomes the popliteal artery as it passes posterior to the knee
Deep femoral arteryBranch of the femoral artery; gives rise to the lateral circumflex arteries
Lateral circumflex arteryBranch of the deep femoral artery; supplies blood to the deep muscles of the thigh and the ventral and lateral regions of the integument
Genicular arteryBranch of the femoral artery; supplies blood to the region of the knee
Popliteal arteryContinuation of the femoral artery posterior to the knee; branches into the anterior and posterior tibial arteries
Anterior tibial arteryBranches from the popliteal artery; supplies blood to the anterior tibial region; becomes the dorsalis pedis artery
Dorsalis pedis arteryForms from the anterior tibial artery; branches repeatedly to supply blood to the tarsal and dorsal regions of the foot
Posterior tibial arteryBranches from the popliteal artery and gives rise to the fibular or peroneal artery; supplies blood to the posterior tibial region
Medial plantar arteryArises from the bifurcation of the posterior tibial arteries; supplies blood to the medial plantar surfaces of the foot
Lateral plantar arteryArises from the bifurcation of the posterior tibial arteries; supplies blood to the lateral plantar surfaces of the foot
Dorsal or arcuate archFormed from the anastomosis of the dorsalis pedis artery and the medial and plantar arteries; branches supply the distal portions of the foot and digits
Plantar archFormed from the anastomosis of the dorsalis pedis artery and the medial and plantar arteries; branches supply the distal portions of the foot and digits

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. The right ventricle pumps oxygen-depleted blood into the pulmonary trunk and right and left pulmonary arteries, which carry it to the right and left lungs for gas exchange.
  2. Oxygen-rich blood is transported by pulmonary veins to the left atrium.
  3. The left ventricle pumps this blood into the aorta.
  4. The main regions of the aorta are the ascending aorta, aortic arch, and descending aorta, which is further divided into the thoracic and abdominal aorta.
  5. The coronary arteries branch from the ascending aorta.
  6. After oxygenating tissues in the capillaries, systemic blood is returned to the right atrium from the venous system via the superior and inferior vena cava.
  7. Additionally, blood is returned via the coronary veins through the coronary sinus.
  8. The hepatic portal system carries blood to the liver for processing before it enters circulation.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!