Module 6: The Lymphatic and Immune Systems

Lesson 1: Anatomy of the Lymphatic and Immune Systems

Giải Phẫu Hệ Bạch Huyết Và Miễn Dịch

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module The Lymphatic and Immune Systems.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: The Lymphatic and Immune Systems

active immunity
immunity developed from an individual’s own immune system
acute inflammation
inflammation occurring for a limited time period; rapidly developing
adaptive immune response
relatively slow but very specific and effective immune response controlled by lymphocytes
afferent lymphatic vessels
lead into a lymph node
antibody
antigen-specific protein secreted by plasma cells; immunoglobulin
antigen
molecule recognized by the receptors of B and T lymphocytes
antigen presentation
binding of processed antigen to the protein-binding cleft of a major histocompatibility complex molecule
antigen processing
internalization and digestion of antigen in an antigen-presenting cell
antigen receptor
two-chain receptor by which lymphocytes recognize antigen
antigenic determinant
(also, epitope) one of the chemical groups recognized by a single type of lymphocyte antigen receptor
B cells
lymphocytes that act by differentiating into an antibody-secreting plasma cell
barrier defenses
antipathogen defenses deriving from a barrier that physically prevents pathogens from entering the body to establish an infection
bone marrow
tissue found inside bones; the site of all blood cell differentiation and maturation of B lymphocytes
bronchus-associated lymphoid tissue (BALT)
lymphoid nodule associated with the respiratory tract
central tolerance
B cell tolerance induced in immature B cells of the bone marrow
chemokine
soluble, long-range, cell-to-cell communication molecule
chronic inflammation
inflammation occurring for long periods of time
chyle
lipid-rich lymph inside the lymphatic capillaries of the small intestine
cisterna chyli
bag-like vessel that forms the beginning of the thoracic duct
class switching
ability of B cells to change the class of antibody they produce without altering the specificity for antigen
clonal anergy
process whereby B cells that react to soluble antigens in bone marrow are made nonfunctional
clonal deletion
removal of self-reactive B cells by inducing apoptosis
clonal expansion
growth of a clone of selected lymphocytes
clonal selection
stimulating growth of lymphocytes that have specific receptors
clone
group of lymphocytes sharing the same antigen receptor
complement
enzymatic cascade of constitutive blood proteins that have antipathogen effects, including the direct killing of bacteria
constant region domain
part of a lymphocyte antigen receptor that does not vary much between different receptor types
cytokine
soluble, short-range, cell-to-cell communication molecule
cytotoxic T cells (Tc)
T lymphocytes with the ability to induce apoptosis in target cells
delayed hypersensitivity
(type IV) T cell-mediated immune response against pathogens infiltrating interstitial tissues, causing cellular infiltrate
early induced immune response
includes antimicrobial proteins stimulated during the first several days of an infection
effector T cells
immune cells with a direct, adverse effect on a pathogen
efferent lymphatic vessels
lead out of a lymph node
erythroblastosis fetalis
disease of Rh factor-positive newborns in Rh-negative mothers with multiple Rh-positive children; resulting from the action of maternal antibodies against fetal blood
fas ligand
molecule expressed on cytotoxic T cells and NK cells that binds to the fas molecule on a target cell and induces it do undergo apoptosis
Fc region
in an antibody molecule, the site where the two termini of the heavy chains come together; many cells have receptors for this portion of the antibody, adding functionality to these molecules
germinal centers
clusters of rapidly proliferating B cells found in secondary lymphoid tissues
graft-versus-host disease
in bone marrow transplants; occurs when the transplanted cells mount an immune response against the recipient
granzyme
apoptosis-inducing substance contained in granules of NK cells and cytotoxic T cells
heavy chain
larger protein chain of an antibody
helper T cells (Th)
T cells that secrete cytokines to enhance other immune responses, involved in activation of both B and T cell lymphocytes
high endothelial venules
vessels containing unique endothelial cells specialized to allow migration of lymphocytes from the blood to the lymph node
histamine
vasoactive mediator in granules of mast cells and is the primary cause of allergies and anaphylactic shock
IgA
antibody whose dimer is secreted by exocrine glands, is especially effective against digestive and respiratory pathogens, and can pass immunity to an infant through breastfeeding
IgD
class of antibody whose only known function is as a receptor on naive B cells; important in B cell activation
IgE
antibody that binds to mast cells and causes antigen-specific degranulation during an allergic response
IgG
main blood antibody of late primary and early secondary responses; passed from carrier to unborn child via placenta
IgM
antibody whose monomer is a surface receptor of naive B cells; the pentamer is the first antibody made blood plasma during primary responses
immediate hypersensitivity
(type I) IgE-mediated mast cell degranulation caused by crosslinking of surface IgE by antigen
immune system
series of barriers, cells, and soluble mediators that combine to response to infections of the body with pathogenic organisms
immunoglobulin
protein antibody; occurs as one of five main classes
immunological memory
ability of the adaptive immune response to mount a stronger and faster immune response upon re-exposure to a pathogen
inflammation
basic innate immune response characterized by heat, redness, pain, and swelling
innate immune response
rapid but relatively nonspecific immune response
interferons
early induced proteins made in virally infected cells that cause nearby cells to make antiviral proteins
light chain
small protein chain of an antibody
lymph
fluid contained within the lymphatic system
lymph node
one of the bean-shaped organs found associated with the lymphatic vessels
lymphatic capillaries
smallest of the lymphatic vessels and the origin of lymph flow
lymphatic system
network of lymphatic vessels, lymph nodes, and ducts that carries lymph from the tissues and back to the bloodstream.
lymphatic trunks
large lymphatics that collect lymph from smaller lymphatic vessels and empties into the blood via lymphatic ducts
lymphocytes
white blood cells characterized by a large nucleus and small rim of cytoplasm
lymphoid nodules
unencapsulated patches of lymphoid tissue found throughout the body
macrophage
ameboid phagocyte found in several tissues throughout the body
macrophage oxidative metabolism
metabolism turned on in macrophages by T cell signals that help destroy intracellular bacteria
major histocompatibility complex (MHC)
gene cluster whose proteins present antigens to T cells
mast cell
cell found in the skin and the lining of body cells that contains cytoplasmic granules with vasoactive mediators such as histamine
memory T cells
long-lived immune cell reserved for future exposure to a pathogen
MHC class I
found on most cells of the body, it binds to the CD8 molecule on T cells
MHC class II
found on macrophages, dendritic cells, and B cells, it binds to CD4 molecules on T cells
MHC polygeny
multiple MHC genes and their proteins found in body cells
MHC polymorphism
multiple alleles for each individual MHC locus
monocyte
precursor to macrophages and dendritic cells seen in the blood
mucosa-associated lymphoid tissue (MALT)
lymphoid nodule associated with the mucosa
naïve lymphocyte
mature B or T cell that has not yet encountered antigen for the first time
natural killer cell (NK)
cytotoxic lymphocyte of innate immune response
negative selection
selection against thymocytes in the thymus that react with self-antigen
neutralization
inactivation of a virus by the binding of specific antibody
neutrophil
phagocytic white blood cell recruited from the bloodstream to the site of infection via the bloodstream
opsonization
enhancement of phagocytosis by the binding of antibody or antimicrobial protein
passive immunity
transfer of immunity to a pathogen to an individual that lacks immunity to this pathogen usually by the injection of antibodies
pattern recognition receptor (PRR)
leukocyte receptor that binds to specific cell wall components of different bacterial species
perforin
molecule in NK cell and cytotoxic T cell granules that form pores in the membrane of a target cell
peripheral tolerance
mature B cell made tolerant by lack of T cell help
phagocytosis
movement of material from the outside to the inside of the cells via vesicles made from invaginations of the plasma membrane
plasma cell
differentiated B cell that is actively secreting antibody
polyclonal response
response by multiple clones to a complex antigen with many determinants
positive selection
selection of thymocytes within the thymus that interact with self, but not non-self, MHC molecules
primary adaptive response
immune system’s response to the first exposure to a pathogen
primary lymphoid organ
site where lymphocytes mature and proliferate; red bone marrow and thymus gland
psychoneuroimmunology
study of the connections between the immune, nervous, and endocrine systems
regulatory T cells (Treg)
(also, suppressor T cells) class of CD4 T cells that regulates other T cell responses
right lymphatic duct
drains lymph fluid from the upper right side of body into the right subclavian vein
secondary adaptive response
immune response observed upon re-exposure to a pathogen, which is stronger and faster than a primary response
secondary lymphoid organs
sites where lymphocytes mount adaptive immune responses; examples include lymph nodes and spleen
sensitization
first exposure to an antigen
seroconversion
clearance of pathogen in the serum and the simultaneous rise of serum antibody
severe combined immunodeficiency disease (SCID)
genetic mutation that affects both T cell and B cell arms of the immune response
spleen
secondary lymphoid organ that filters pathogens from the blood (white pulp) and removes degenerating or damaged blood cells (red pulp)
T cell
lymphocyte that acts by secreting molecules that regulate the immune system or by causing the destruction of foreign cells, viruses, and cancer cells
T cell tolerance
process during T cell differentiation where most T cells that recognize antigens from one’s own body are destroyed
T cell-dependent antigen
antigen that binds to B cells, which requires signals from T cells to make antibody
T cell-independent antigen
binds to B cells, which do not require signals from T cells to make antibody
Th1 cells
cells that secrete cytokines that enhance the activity of macrophages and other cells
Th2 cells
cells that secrete cytokines that induce B cells to differentiate into antibody-secreting plasma cells
thoracic duct
large duct that drains lymph from the lower limbs, left thorax, left upper limb, and the left side of the head
thymocyte
immature T cell found in the thymus
thymus
primary lymphoid organ; where T lymphocytes proliferate and mature
tissue typing
typing of MHC molecules between a recipient and donor for use in a potential transplantation procedure
tonsils
lymphoid nodules associated with the nasopharynx
type I hypersensitivity
immediate response mediated by mast cell degranulation caused by the crosslinking of the antigen-specific IgE molecules on the mast cell surface
type II hypersensitivity
cell damage caused by the binding of antibody and the activation of complement, usually against red blood cells
type III hypersensitivity
damage to tissues caused by the deposition of antibody-antigen (immune) complexes followed by the activation of complement
variable region domain
part of a lymphocyte antigen receptor that varies considerably between different receptor types
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
The immune system is the complex collection of cells and organs that destroys or neutralizes pathogens that would otherwise cause disease or death. The lymphatic system, for most people, is associated with the immune system to such a degree that the two systems are virtually indistinguishable. The lymphatic system is the system of vessels, cells, and organs that carries excess fluids to the bloodstream and filters pathogens from the blood. The swelling of lymph nodes during an infection and the transport of lymphocytes via the lymphatic vessels are but two examples of the many connections between these critical organ systems.
A major function of the lymphatic system is to drain body fluids and return them to the bloodstream. Blood pressure causes leakage of fluid from the capillaries, resulting in the accumulation of fluid in the interstitial space—that is, spaces between individual cells in the tissues. In humans, 20 liters of plasma is released into the interstitial space of the tissues each day due to capillary filtration. Once this filtrate is out of the bloodstream and in the tissue spaces, it is referred to as interstitial fluid. Of this, 17 liters is reabsorbed directly by the blood vessels. But what happens to the remaining three liters? This is where the lymphatic system comes into play. It drains the excess fluid and empties it back into the bloodstream via a series of vessels, trunks, and ducts. Lymph is the term used to describe interstitial fluid once it has entered the lymphatic system. When the lymphatic system is damaged in some way, such as by being blocked by cancer cells or destroyed by injury, protein-rich interstitial fluid accumulates (sometimes “backs up” from the lymph vessels) in the tissue spaces. This inappropriate accumulation of fluid referred to as lymphedema may lead to serious medical consequences.

As the vertebrate immune system evolved, the network of lymphatic vessels became convenient avenues for transporting the cells of the immune system. Additionally, the transport of dietary lipids and fat-soluble vitamins absorbed in the gut uses this system.

Cells of the immune system not only use lymphatic vessels to make their way from interstitial spaces back into the circulation, but they also use lymph nodes as major staging areas for the development of critical immune responses. A lymph node is one of the small, bean-shaped organs located throughout the lymphatic system.
The lymphatic vessels begin as a blind ending, or closed at one end, capillaries, which feed into larger and larger lymphatic vessels, and eventually empty into the bloodstream by a series of ducts. Along the way, the lymph travels through the lymph nodes, which are commonly found near the groin, armpits, neck, chest, and abdomen. Humans have about 500–600 lymph nodes throughout the body (Figure 1).

A major distinction between the lymphatic and cardiovascular systems in humans is that lymph is not actively pumped by the heart, but is forced through the vessels by the movements of the body, the contraction of skeletal muscles during body movements, and breathing. One-way valves (semi-lunar valves) in lymphatic vessels keep the lymph moving toward the heart. Lymph flows from the lymphatic capillaries, through lymphatic vessels, and then is dumped into the circulatory system via the lymphatic ducts located at the junction of the jugular and subclavian veins in the neck.

A. Lymphatic Capillaries

Lymphatic capillaries, also called the terminal lymphatics, are vessels where interstitial fluid enters the lymphatic system to become lymph fluid. Located in almost every tissue in the body, these vessels are interlaced among the arterioles and venules of the circulatory system in the soft connective tissues of the body (Figure 2). Exceptions are the central nervous system, bone marrow, bones, teeth, and the cornea of the eye, which do not contain lymph vessels.

Lymphatic capillaries are formed by a one cell-thick layer of endothelial cells and represent the open end of the system, allowing interstitial fluid to flow into them via overlapping cells (see Figure 2). When interstitial pressure is low, the endothelial flaps close to prevent “backflow.” As interstitial pressure increases, the spaces between the cells open up, allowing the fluid to enter. Entry of fluid into lymphatic capillaries is also enabled by the collagen filaments that anchor the capillaries to surrounding structures. As interstitial pressure increases, the filaments pull on the endothelial cell flaps, opening up them even further to allow easy entry of fluid.

In the small intestine, lymphatic capillaries called lacteals are critical for the transport of dietary lipids and lipid-soluble vitamins to the bloodstream. In the small intestine, dietary triglycerides combine with other lipids and proteins, and enter the lacteals to form a milky fluid called chyle. The chyle then travels through the lymphatic system, eventually entering the bloodstream.

B. Larger Lymphatic Vessels, Trunks, and Ducts

The lymphatic capillaries empty into larger lymphatic vessels, which are similar to veins in terms of their three-tunic structure and the presence of valves. These one-way valves are located fairly close to one another, and each one causes a bulge in the lymphatic vessel, giving the vessels a beaded appearance (see Figure 2).

The superficial and deep lymphatics eventually merge to form larger lymphatic vessels known as lymphatic trunks. On the right side of the body, the right sides of the head, thorax, and right upper limb drain lymph fluid into the right subclavian vein via the right lymphatic duct (Figure 3). On the left side of the body, the remaining portions of the body drain into the larger thoracic duct, which drains into the left subclavian vein. The thoracic duct itself begins just beneath the diaphragm in the cisterna chyli, a sac-like chamber that receives lymph from the lower abdomen, pelvis, and lower limbs by way of the left and right lumbar trunks and the intestinal trunk.

The overall drainage system of the body is asymmetrical (see Figure 3). The right lymphatic duct receives lymph from only the upper right side of the body. The lymph from the rest of the body enters the bloodstream through the thoracic duct via all the remaining lymphatic trunks. In general, lymphatic vessels of the subcutaneous tissues of the skin, that is, the superficial lymphatics, follow the same routes as veins, whereas the deep lymphatic vessels of the viscera generally follow the paths of arteries.
The immune system is a collection of barriers, cells, and soluble proteins that interact and communicate with each other in extraordinarily complex ways. The modern model of immune function is organized into three phases based on the timing of their effects. The three temporal phases consist of the following:

  • Barrier defenses such as the skin and mucous membranes, which act instantaneously to prevent pathogenic invasion into the body tissues.
  • The rapid but nonspecific innate immune response, which consists of a variety of specialized cells and soluble factors.
  • The slower but more specific and effective adaptive immune response, which involves many cell types and soluble factors, but is primarily controlled by white blood cells (leukocytes) known as lymphocytes, which help control immune responses.

The cells of the blood, including all those involved in the immune response, arise in the bone marrow via various differentiation pathways from hematopoietic stem cells (Figure 4). In contrast with embryonic stem cells, hematopoietic stem cells are present throughout adulthood and allow for the continuous differentiation of blood cells to replace those lost to age or function. These cells can be divided into three classes based on function:

  • Phagocytic cells, which ingest pathogens to destroy them.
  • Lymphocytes, which specifically coordinate the activities of adaptive immunity.
  • Cells containing cytoplasmic granules, which help mediate immune responses against parasites and intracellular pathogens such as viruses
As stated above, lymphocytes are the primary cells of adaptive immune responses (Table 1). The two basic types of lymphocytes, B cells and T cells, are identical morphologically with a large central nucleus surrounded by a thin layer of cytoplasm. They are distinguished from each other by their surface protein markers as well as by the molecules they secrete. While B cells mature in red bone marrow and T cells mature in the thymus, they both initially develop from bone marrow. T cells migrate from bone marrow to the thymus gland where they further mature. B cells and T cells are found in many parts of the body, circulating in the bloodstream and lymph, and residing in secondary lymphoid organs, including the spleen and lymph nodes, which will be described later in this section. The human body contains approximately 1012 lymphocytes.

A. B Cells

B cells are immune cells that function primarily by producing antibodies. An antibody is any of the group of proteins that binds specifically to pathogen-associated molecules known as antigens. An antigen is a chemical structure on the surface of a pathogen that binds to T or B lymphocyte antigen receptors. Once activated by binding to antigen, B cells differentiate into cells that secrete a soluble form of their surface antibodies. These activated B cells are known as plasma cells.

B. T Cells

The T cell, on the other hand, does not secrete antibody but performs a variety of functions in the adaptive immune response. Different T cell types have the ability to either secrete soluble factors that communicate with other cells of the adaptive immune response or destroy cells infected with intracellular pathogens. The roles of T and B lymphocytes in the adaptive immune response will be discussed further in this chapter.

C. Plasma Cells

Another type of lymphocyte of importance is the plasma cell. A plasma cell is a B cell that has differentiated in response to antigen binding, and has thereby gained the ability to secrete soluble antibodies. These cells differ in morphology from standard B and T cells in that they contain a large amount of cytoplasm packed with the protein-synthesizing machinery known as rough endoplasmic reticulum.

D. Natural Killer Cells

A fourth important lymphocyte is the natural killer cell, a participant in the innate immune response. A natural killer cell (NK) is a circulating blood cell that contains cytotoxic (cell-killing) granules in its extensive cytoplasm. It shares this mechanism with the cytotoxic T cells of the adaptive immune response. NK cells are among the body’s first lines of defense against viruses and certain types of cancer.
Understanding the differentiation and development of B and T cells is critical to the understanding of the adaptive immune response. It is through this process that the body (ideally) learns to destroy only pathogens and leaves the body’s own cells relatively intact. The primary lymphoid organs are the bone marrow and thymus gland. The lymphoid organs are where lymphocytes mature, proliferate, and are selected, which enables them to attack pathogens without harming the cells of the body.

A. Bone Marrow

In the embryo, blood cells are made in the yolk sac. As development proceeds, this function is taken over by the spleen, lymph nodes, and liver. Later, the bone marrow takes over most hematopoietic functions, although the final stages of the differentiation of some cells may take place in other organs. The red bone marrow is a loose collection of cells where hematopoiesis occurs, and the yellow bone marrow is a site of energy storage, which consists largely of fat cells (Figure 5). The B cell undergoes nearly all of its development in the red bone marrow, whereas the immature T cell, called a thymocyte, leaves the bone marrow and matures largely in the thymus gland.

B. Thymus

The thymus gland is a bilobed organ found in the space between the sternum and the aorta of the heart (Figure 6). Connective tissue holds the lobes closely together but also separates them and forms a capsule.

The connective tissue capsule further divides the thymus into lobules via extensions called trabeculae. The outer region of the organ is known as the cortex and contains large numbers of thymocytes with some epithelial cells, macrophages, and dendritic cells (two types of phagocytic cells that are derived from monocytes). The cortex is densely packed so it stains more intensely than the rest of the thymus (see Figure 6). The medulla, where thymocytes migrate before leaving the thymus, contains a less dense collection of thymocytes, epithelial cells, and dendritic cells.
Lymphocytes develop and mature in the primary lymphoid organs, but they mount immune responses from the secondary lymphoid organs. A naïve lymphocyte is one that has left the primary organ and entered a secondary lymphoid organ. Naïve lymphocytes are fully functional immunologically, but have yet to encounter an antigen to respond to. In addition to circulating in the blood and lymph, lymphocytes concentrate in secondary lymphoid organs, which include the lymph nodes, spleen, and lymphoid nodules. All of these tissues have many features in common, including the following:

  • The presence of lymphoid follicles, the sites of the formation of lymphocytes, with specific B cell-rich and T cell-rich areas.
  • An internal structure of reticular fibers with associated fixed macrophages.
  • Germinal centers, which are the sites of rapidly dividing and differentiating B lymphocytes.
  • Specialized post-capillary vessels known as high endothelial venules; the cells lining these venules are thicker and more columnar than normal endothelial cells, which allow cells from the blood to directly enter these tissues.

A. Lymph Nodes

Lymph nodes function to remove debris and pathogens from the lymph, and are thus sometimes referred to as the “filters of the lymph” (Figure 7). Any bacteria that infect the interstitial fluid are taken up by the lymphatic capillaries and transported to a regional lymph node. Dendritic cells and macrophages within this organ internalize and kill many of the pathogens that pass through, thereby removing them from the body. The lymph node is also the site of adaptive immune responses mediated by T cells, B cells, and accessory cells of the adaptive immune system. Like the thymus, the bean-shaped lymph nodes are surrounded by a tough capsule of connective tissue and are separated into compartments by trabeculae, the extensions of the capsule. In addition to the structure provided by the capsule and trabeculae, the structural support of the lymph node is provided by a series of reticular fibers laid down by fibroblasts.

The major routes into the lymph node are via afferent lymphatic vessels (see Figure 7). Cells and lymph fluid that leave the lymph node may do so by another set of vessels known as the efferent lymphatic vessels. Lymph enters the lymph node via the subcapsular sinus, which is occupied by dendritic cells, macrophages, and reticular fibers. Within the cortex of the lymph node are lymphoid follicles, which consist of germinal centers of rapidly dividing B cells surrounded by a layer of T cells and other accessory cells. As the lymph continues to flow through the node, it enters the medulla, which consists of medullary cords of B cells and plasma cells, and the medullary sinuses where the lymph collects before leaving the node via the efferent lymphatic vessels.

B. Spleen

In addition to the lymph nodes, the spleen is a major secondary lymphoid organ (Figure 8). It is about 12 cm (5 in) long and is attached to the lateral border of the stomach via the gastrosplenic ligament. The spleen is a fragile organ without a strong capsule, and is dark red due to its extensive vascularization. The spleen is sometimes called the “filter of the blood” because of its extensive vascularization and the presence of macrophages and dendritic cells that remove microbes and other materials from the blood, including dying red blood cells. The spleen also functions as the location of immune responses to blood-borne pathogens.

The spleen is also divided by trabeculae of connective tissue, and within each splenic nodule is an area of red pulp, consisting of mostly red blood cells, and white pulp, which resembles the lymphoid follicles of the lymph nodes. Upon entering the spleen, the splenic artery splits into several arterioles (surrounded by white pulp) and eventually into sinusoids. Blood from the capillaries subsequently collects in the venous sinuses and leaves via the splenic vein. The red pulp consists of reticular fibers with fixed macrophages attached, free macrophages, and all of the other cells typical of the blood, including some lymphocytes. The white pulp surrounds a central arteriole and consists of germinal centers of dividing B cells surrounded by T cells and accessory cells, including macrophages and dendritic cells. Thus, the red pulp primarily functions as a filtration system of the blood, using cells of the relatively nonspecific immune response, and white pulp is where adaptive T and B cell responses are mounted.

C. Lymphoid Nodules

The other lymphoid tissues, the lymphoid nodules, have a simpler architecture than the spleen and lymph nodes in that they consist of a dense cluster of lymphocytes without a surrounding fibrous capsule. These nodules are located in the respiratory and digestive tracts, areas routinely exposed to environmental pathogens.

Tonsils are lymphoid nodules located along the inner surface of the pharynx and are important in developing immunity to oral pathogens (Figure 9). The tonsil located at the back of the throat, the pharyngeal tonsil, is sometimes referred to as the adenoid when swollen. Such swelling is an indication of an active immune response to infection. Histologically, tonsils do not contain a complete capsule, and the epithelial layer invaginates deeply into the interior of the tonsil to form tonsillar crypts. These structures, which accumulate all sorts of materials taken into the body through eating and breathing, actually “encourage” pathogens to penetrate deep into the tonsillar tissues where they are acted upon by numerous lymphoid follicles and eliminated. This seems to be the major function of tonsils—to help children’s bodies recognize, destroy, and develop immunity to common environmental pathogens so that they will be protected in their later lives. Tonsils are often removed in those children who have recurring throat infections, especially those involving the palatine tonsils on either side of the throat, whose swelling may interfere with their breathing and/or swallowing.

Mucosa-associated lymphoid tissue (MALT) consists of an aggregate of lymphoid follicles directly associated with the mucous membrane epithelia. MALT makes up dome-shaped structures found underlying the mucosa of the gastrointestinal tract, breast tissue, lungs, and eyes. Peyer’s patches, a type of MALT in the small intestine, are especially important for immune responses against ingested substances (Figure 10). Peyer’s patches contain specialized endothelial cells called M (or microfold) cells that sample material from the intestinal lumen and transport it to nearby follicles so that adaptive immune responses to potential pathogens can be mounted. A similar process occurs involving MALT in the mucosa and submucosa of the appendix. A blockage of the lumen triggers these cells to elicit an inflammatory response that can lead to appendicitis.

Bronchus-associated lymphoid tissue (BALT) consists of lymphoid follicular structures with an overlying epithelial layer found along the bifurcations of the bronchi, and between bronchi and arteries. They also have the typically less-organized structure of other lymphoid nodules. These tissues, in addition to the tonsils, are effective against inhaled pathogens.

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

Lymphatic vessels in the arms and legs convey lymph to the larger lymphatic vessels in the torso.

Lymphatic capillaries are interlaced with the arterioles and venules of the cardiovascular system. Collagen fibers anchor a lymphatic capillary in the tissue (inset). Interstitial fluid slips through spaces between the overlapping endothelial cells that compose the lymphatic capillary.

The thoracic duct drains a much larger portion of the body than does the right lymphatic duct.

All the cells of the immune response as well as of the blood arise by differentiation from hematopoietic stem cells. Platelets are cell fragments involved in the clotting of blood.

Type of lymphocytePrimary function
B lymphocyteGenerates diverse antibodies
T lymphocyteSecretes chemical messengers
Plasma cellSecretes antibodies
NK cellDestroys virally infected cells

Red bone marrow fills the head of the femur, and a spot of yellow bone marrow is visible in the center. The white reference bar is 1 cm.

The thymus lies above the heart. The trabeculae and lobules, including the darkly staining cortex and the lighter staining medulla of each lobule, are clearly visible in the light micrograph of the thymus of a newborn. LM × 100. (Micrograph provided by the Regents of the University of Michigan Medical School © 2012)

Lymph nodes are masses of lymphatic tissue located along the larger lymph vessels. The micrograph of the lymph nodes shows a germinal center, which consists of rapidly dividing B cells surrounded by a layer of T cells and other accessory cells. LM × 128. (Micrograph provided by the Regents of the University of Michigan Medical School © 2012)

(a) The spleen is attached to the stomach. (b) A micrograph of spleen tissue shows the germinal center. The marginal zone is the region between the red pulp and white pulp, which sequesters particulate antigens from the circulation and presents these antigens to lymphocytes in the white pulp. EM × 660. (Micrograph provided by the Regents of the University of Michigan Medical School © 2012)

(a) The pharyngeal tonsil is located on the roof of the posterior superior wall of the nasopharynx. The palatine tonsils lay on each side of the pharynx. (b) A micrograph shows the palatine tonsil tissue. LM × 40. (Micrograph provided by the Regents of the University of Michigan Medical School © 2012)

LM × 40. (Micrograph provided by the Regents of the University of Michigan Medical School © 2012)

Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. The immune system, intricately intertwined with the lymphatic system, serves as the body’s defense mechanism against pathogens.
  2. The lymphatic system, responsible for draining excess fluids from tissues and filtering pathogens from the blood, plays a crucial role in maintaining fluid balance and immunity.
  3. When blood pressure causes fluid leakage into interstitial spaces, the lymphatic system ensures the return of excess fluid to the bloodstream, preventing tissue swelling and maintaining homeostasis.
  4. Additionally, lymphatic vessels serve as conduits for immune cells, aiding their transport from interstitial spaces to lymph nodes where immune responses are orchestrated.
  5. Structurally, the lymphatic system comprises lymphatic vessels, nodes, and organs such as the spleen and thymus.
  6. Lymphatic capillaries, found throughout the body except in certain tissues like the central nervous system, facilitate the entry of interstitial fluid into the lymphatic system.
  7. These capillaries converge into larger lymphatic vessels, ultimately emptying into the bloodstream via ducts near the neck.
  8. The lymphatic system’s asymmetrical drainage pattern directs lymph fluid from different parts of the body into distinct ducts, ensuring efficient fluid reabsorption.
  9. Primary lymphoid organs such as the bone marrow and thymus facilitate the maturation and selection of lymphocytes.
  10. These organs are crucial in preparing the immune system to mount effective responses.
  11. Secondary lymphoid organs, including lymph nodes and the spleen, serve as battlegrounds for immune responses.
  12. Lymph nodes filter pathogens from lymph fluid and facilitate interactions between immune cells, crucial for mounting adaptive immune responses.
  13. The spleen, acting as a filter for blood, also orchestrates immune responses to blood-borne pathogens.
  14. These organs harbor specialized structures like germinal centers and high endothelial venules, optimizing immune cell interactions.
  15. Additionally, lymphoid nodules scattered throughout mucosal tissues play vital roles in immune surveillance, especially in areas exposed to environmental pathogens like the respiratory and digestive tracts.
  16. Tonsils and mucosa-associated lymphoid tissue (MALT) represent examples of such nodules, essential for local immune defense against oral and gastrointestinal pathogens.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!