Module 28: Development and Inheritance

Lesson 2: Embryonic Development

Phát triển Phôi

Nội dung bài học:
Mỗi bài học (lesson) bao gồm 4 phần chính: Thuật ngữ, Luyện Đọc, Luyện Nghe, và Bàn Luận.
Sử dụng tính năng:
Bôi hoặc nhấp đôi vào từ, sau đó ấn vào biểu tượng để tra nghĩa từ đó. Khi bạn đưa chuột đến câu (hoặc khi nhấp vào câu trên màn hình điện thoại), gợi ý về cách hiểu câu đó sẽ hiện lên. Cuối cùng, bạn có thể đánh dấu hoàn thành toàn bộ bài học bằng cách ấn vào nút “Hoàn Thành” ở cuối trang.
Đăng ký và đăng nhập
Bạn cần đăng ký và đăng nhập vào tài khoản để lưu quá trình học.
Dưới đây là danh sách những thuật ngữ Y khoa của module Development and Inheritance.
Khái quát được số lượng thuật ngữ sẽ xuất hiện trong bài đọc và nghe sẽ giúp bạn thoải mái tiêu thụ nội dung hơn. Sau khi hoàn thành nội dung đọc và nghe, bạn hãy quay lại đây và luyện tập (practice) để quen dần các thuật ngữ này. Đừng ép bản thân phải nhớ các thuật ngữ này vội vì bạn sẽ gặp và ôn lại danh sách này trong những bài học (lesson) khác của cùng một module.

Medical Terminology: Development and Inheritance

acrosomal reaction
release of digestive enzymes by sperm that enables them to burrow through the corona radiata and penetrate the zona pellucida of an oocyte prior to fertilization
acrosome
cap-like vesicle located at the anterior-most region of a sperm that is rich with lysosomal enzymes capable of digesting the protective layers surrounding the oocyte
afterbirth
third stage of childbirth in which the placenta and associated fetal membranes are expelled
allantois
finger-like outpocketing of yolk sac forms the primitive excretory duct of the embryo; precursor to the urinary bladder
allele
alternative forms of a gene that occupy a specific locus on a specific gene
amnion
transparent membranous sac that encloses the developing fetus and fills with amniotic fluid
amniotic cavity
cavity that opens up between the inner cell mass and the trophoblast; develops into amnion
autosomal chromosome
in humans, the 22 pairs of chromosomes that are not the sex chromosomes (XX or XY)
autosomal dominant
pattern of dominant inheritance that corresponds to a gene on one of the 22 autosomal chromosomes
autosomal recessive
pattern of recessive inheritance that corresponds to a gene on one of the 22 autosomal chromosomes
blastocoel
fluid-filled cavity of the blastocyst
blastocyst
term for the conceptus at the developmental stage that consists of about 100 cells shaped into an inner cell mass that is fated to become the embryo and an outer trophoblast that is fated to become the associated fetal membranes and placenta
blastomere
daughter cell of a cleavage
Braxton Hicks contractions
weak and irregular peristaltic contractions that can occur in the second and third trimesters; they do not indicate that childbirth is imminent
brown adipose tissue
highly vascularized fat tissue that is packed with mitochondria; these properties confer the ability to oxidize fatty acids to generate heat
capacitation
process that occurs in the female reproductive tract in which sperm are prepared for fertilization; leads to increased motility and changes in their outer membrane that improve their ability to release enzymes capable of digesting an oocyte’s outer layers
carrier
heterozygous individual who does not display symptoms of a recessive genetic disorder but can transmit the disorder to their offspring
chorion
membrane that develops from the syncytiotrophoblast, cytotrophoblast, and mesoderm; surrounds the embryo and forms the fetal portion of the placenta through the chorionic villi
chorionic membrane
precursor to the chorion; forms from extra-embryonic mesoderm cells
chorionic villi
projections of the chorionic membrane that burrow into the endometrium and develop into the placenta
cleavage
form of mitotic cell division in which the cell divides but the total volume remains unchanged; this process serves to produce smaller and smaller cells
codominance
pattern of inheritance that corresponds to the equal, distinct, and simultaneous expression of two different alleles
colostrum
thick, yellowish substance secreted from a mother’s breasts in the first postpartum days; rich in immunoglobulins
conceptus
pre-implantation stage of a fertilized egg and its associated membranes
corona radiata
in an oocyte, a layer of granulosa cells that surrounds the oocyte and that must be penetrated by sperm before fertilization can occur
cortical reaction
following fertilization, the release of cortical granules from the oocyte’s plasma membrane into the zona pellucida creating a fertilization membrane that prevents any further attachment or penetration of sperm; part of the slow block to polyspermy
dilation
first stage of childbirth, involving an increase in cervical diameter
dominant
describes a trait that is expressed both in homozygous and heterozygous form
dominant lethal
inheritance pattern in which individuals with one or two copies of a lethal allele do not survive in utero or have a shortened life span
ductus arteriosus
shunt in the pulmonary trunk that diverts oxygenated blood back to the aorta
ductus venosus
shunt that causes oxygenated blood to bypass the fetal liver on its way to the inferior vena cava
ectoderm
primary germ layer that develops into the central and peripheral nervous systems, sensory organs, epidermis, hair, and nails
ectopic pregnancy
implantation of an embryo outside of the uterus
embryo
developing human during weeks 3–8
embryonic folding
process by which an embryo develops from a flat disc of cells to a three-dimensional shape resembling a cylinder
endoderm
primary germ layer that goes on to form the gastrointestinal tract, liver, pancreas, and lungs
epiblast
upper layer of cells of the embryonic disc that forms from the inner cell mass; gives rise to all three germ layers
episiotomy
incision made in the posterior vaginal wall and perineum that facilitates vaginal birth
expulsion
second stage of childbirth, during which the mother bears down with contractions; this stage ends in birth
fertilization
unification of genetic material from male and female haploid gametes
fertilization membrane
impenetrable barrier that coats a nascent zygote; part of the slow block to polyspermy
fetus
developing human during the time from the end of the embryonic period (week 9) to birth
foramen ovale
shunt that directly connects the right and left atria and helps divert oxygenated blood from the fetal pulmonary circuit
foremilk
watery, translucent breast milk that is secreted first during a feeding and is rich in lactose and protein; quenches the infant’s thirst
gastrulation
process of cell migration and differentiation into three primary germ layers following cleavage and implantation
genotype
complete genetic makeup of an individual
gestation
in human development, the period required for embryonic and fetal development in utero; pregnancy
heterozygous
having two different alleles for a given gene
hindmilk
opaque, creamy breast milk delivered toward the end of a feeding; rich in fat; satisfies the infant’s appetite
homozygous
having two identical alleles for a given gene
human chorionic gonadotropin (hCG)
hormone that directs the corpus luteum to survive, enlarge, and continue producing progesterone and estrogen to suppress menses and secure an environment suitable for the developing embryo
hypoblast
lower layer of cells of the embryonic disc that extend into the blastocoel to form the yolk sac
implantation
process by which a blastocyst embeds itself in the uterine endometrium
incomplete dominance
pattern of inheritance in which a heterozygous genotype expresses a phenotype intermediate between dominant and recessive phenotypes
inner cell mass
cluster of cells within the blastocyst that is fated to become the embryo
involution
postpartum shrinkage of the uterus back to its pre-pregnancy volume
karyotype
systematic arrangement of images of chromosomes into homologous pairs
lactation
process by which milk is synthesized and secreted from the mammary glands of the postpartum female breast in response to sucking at the nipple
lanugo
silk-like hairs that coat the fetus; shed later in fetal development
let-down reflex
release of milk from the alveoli triggered by infant suckling
lightening
descent of the fetus lower into the pelvis in late pregnancy; also called “dropping”
lochia
postpartum vaginal discharge that begins as blood and ends as a whitish discharge; the end of lochia signals that the site of placental attachment has healed
meconium
fetal wastes consisting of ingested amniotic fluid, cellular debris, mucus, and bile
mesoderm
primary germ layer that becomes the skeleton, muscles, connective tissue, heart, blood vessels, and kidneys
morula
tightly packed sphere of blastomeres that has reached the uterus but has not yet implanted itself
mutation
change in the nucleotide sequence of DNA
neural fold
elevated edge of the neural groove
neural plate
thickened layer of neuroepithelium that runs longitudinally along the dorsal surface of an embryo and gives rise to nervous system tissue
neural tube
precursor to structures of the central nervous system, formed by the invagination and separation of neuroepithelium
neurulation
embryonic process that establishes the central nervous system
nonshivering thermogenesis
process of breaking down brown adipose tissue to produce heat in the absence of a shivering response
notochord
rod-shaped, mesoderm-derived structure that provides support for growing fetus
organogenesis
development of the rudimentary structures of all of an embryo’s organs from the germ layers
parturition
childbirth
phenotype
physical or biochemical manifestation of the genotype; expression of the alleles
placenta
organ that forms during pregnancy to nourish the developing fetus; also regulates waste and gas exchange between mother and fetus
placenta previa
low placement of fetus within uterus causes placenta to partially or completely cover the opening of the cervix as it grows
placentation
formation of the placenta; complete by weeks 14–16 of pregnancy
polyspermy
penetration of an oocyte by more than one sperm
primitive streak
indentation along the dorsal surface of the epiblast through which cells migrate to form the endoderm and mesoderm during gastrulation
prolactin
pituitary hormone that establishes and maintains the supply of breast milk; also important for the mobilization of maternal micronutrients for breast milk
Punnett square
grid used to display all possible combinations of alleles transmitted by parents to offspring and predict the mathematical probability of offspring inheriting a given genotype
quickening
fetal movements that are strong enough to be felt by the mother
recessive
describes a trait that is only expressed in homozygous form and is masked in heterozygous form
recessive lethal
inheritance pattern in which individuals with two copies of a lethal allele do not survive in utero or have a shortened life span
sex chromosomes
pair of chromosomes involved in sex determination; in males, the XY chromosomes; in females, the XX chromosomes
shunt
circulatory shortcut that diverts the flow of blood from one region to another
somite
one of the paired, repeating blocks of tissue located on either side of the notochord in the early embryo
syncytiotrophoblast
superficial cells of the trophoblast that fuse to form a multinucleated body that digests endometrial cells to firmly secure the blastocyst to the uterine wall
trait
variation of an expressed characteristic
trimester
division of the duration of a pregnancy into three 3-month terms
trophoblast
fluid-filled shell of squamous cells destined to become the chorionic villi, placenta, and associated fetal membranes
true labor
regular contractions that immediately precede childbirth; they do not abate with hydration or rest, and they become more frequent and powerful with time
umbilical cord
connection between the developing conceptus and the placenta; carries deoxygenated blood and wastes from the fetus and returns nutrients and oxygen from the mother
vernix caseosa
waxy, cheese-like substance that protects the delicate fetal skin until birth
X-linked
pattern of inheritance in which an allele is carried on the X chromosome of the 23rd pair
X-linked dominant
pattern of dominant inheritance that corresponds to a gene on the X chromosome of the 23rd pair
X-linked recessive
pattern of recessive inheritance that corresponds to a gene on the X chromosome of the 23rd pair
yolk sac
membrane associated with primitive circulation to the developing embryo; source of the first blood cells and germ cells and contributes to the umbilical cord structure
zona pellucida
thick, gel-like glycoprotein membrane that coats the oocyte and must be penetrated by sperm before fertilization can occur
zygote
fertilized egg; a diploid cell resulting from the fertilization of haploid gametes from the male and female lines
Nội dung này đang được cập nhật.
Dưới đây là các bài văn nằm ở bên trái. Ở bên phải là các bài luyện tập (practice) để đánh giá khả năng đọc hiểu của bạn. Sẽ khó khăn trong thời gian đầu nếu vốn từ vựng của bạn còn hạn chế, đặc biệt là từ vựng Y khoa. Hãy kiên nhẫn và đọc nhiều nhất có kể, lượng kiến thức tích tụ dần sẽ giúp bạn đọc thoải mái hơn.
Throughout this chapter, we will express embryonic and fetal ages in terms of weeks from fertilization, commonly called conception. The period of time required for full development of a fetus in utero is referred to as gestation (gestare = “to carry” or “to bear”). It can be subdivided into distinct gestational periods. The first 2 weeks of prenatal development are referred to as the pre-embryonic stage. A developing human is referred to as an embryo during weeks 3–8, and a fetus from the ninth week of gestation until birth. In this section, we’ll cover the pre-embryonic and embryonic stages of development, which are characterized by cell division, migration, and differentiation. By the end of the embryonic period, all of the organ systems are structured in rudimentary form, although the organs themselves are either nonfunctional or only semi-functional.
Following fertilization, the zygote and its associated membranes, together referred to as the conceptus, continue to be projected toward the uterus by peristalsis and beating cilia of the epithelial cells of the Fallopian tube. During its journey to the uterus, the zygote undergoes five or six rapid mitotic cell divisions. Although each cleavage results in more cells, it does not increase the total volume of the conceptus (Figure 1). Each daughter cell produced by cleavage is called a blastomere (blastos = “germ,” in the sense of a seed or sprout).

Approximately 3 days after fertilization, a 16-cell conceptus reaches the uterus. The cells that had been loosely grouped are now compacted and look more like a solid mass. The name given to this structure is the morula (morula = “little mulberry”). Once inside the uterus, the conceptus floats freely for several more days. It continues to divide, creating a ball of approximately 100 cells, and consuming nutritive endometrial secretions called uterine milk while the uterine lining thickens. The ball of now tightly bound cells starts to secrete fluid and organize themselves around a fluid-filled cavity, the blastocoel. At this developmental stage, the conceptus is referred to as a blastocyst. Within this structure, a group of cells forms into an inner cell mass, which is fated to become the embryo. The cells that form the outer shell are called trophoblasts (trophe = “to feed” or “to nourish”). These cells will develop into the chorionic sac and the fetal portion of the placenta (the organ of nutrient, waste, and gas exchange between a pregnant person and the developing offspring).

The inner mass of embryonic cells is totipotent during this stage, meaning that each cell has the potential to differentiate into any cell type in the human body. Totipotency lasts for only a few days before the cells’ fates are set as being the precursors to a specific lineage of cells.

As the blastocyst forms, the trophoblast excretes enzymes that begin to degrade the zona pellucida. In a process called “hatching,” the conceptus breaks free of the zona pellucida in preparation for implantation.
At the end of the first week, the blastocyst comes in contact with the uterine wall and adheres to it, embedding itself in the uterine lining via the trophoblast cells. Thus begins the process of implantation, which signals the end of the pre-embryonic stage of development (Figure 2). Implantation can be accompanied by minor bleeding. The blastocyst typically implants in the fundus of the uterus or on the posterior wall. However, if the endometrium is not fully developed and ready to receive the blastocyst, the blastocyst will detach and find a better spot. A significant percentage (50–75 percent) of blastocysts fail to implant; when this occurs, the blastocyst is shed with the endometrium during menses. The high rate of implantation failure is one reason why pregnancy typically requires several ovulation cycles to achieve.

When implantation succeeds and the blastocyst adheres to the endometrium, the superficial cells of the trophoblast fuse with each other, forming the syncytiotrophoblast, a multinucleated body that digests endometrial cells to firmly secure the blastocyst to the uterine wall. In response, the uterine mucosa rebuilds itself and envelops the blastocyst (Figure 3). The trophoblast secretes human chorionic gonadotropin (hCG), a hormone that directs the corpus luteum to survive, enlarge, and continue producing progesterone and estrogen to suppress menses. These functions of hCG are necessary for creating an environment suitable for the developing embryo. As a result of this increased production, hCG accumulates in the maternal bloodstream and is excreted in the urine. Implantation is complete by the middle of the second week. Just a few days after implantation, the trophoblast has secreted enough hCG for an at-home urine pregnancy test to give a positive result.

Most of the time an embryo implants within the body of the uterus in a location that can support growth and development. However, in one to two percent of cases, the embryo implants either outside the uterus (an ectopic pregnancy) or in a region of uterus that can create complications for the pregnancy. If the embryo implants in the inferior portion of the uterus, the placenta can potentially grow over the opening of the cervix, a condition call placenta previa.
During the second week of development, with the embryo implanted in the uterus, cells within the blastocyst start to organize into layers. Some grow to form the extra-embryonic membranes needed to support and protect the growing embryo: the amnion, the yolk sac, the allantois, and the chorion.

At the beginning of the second week, the cells of the inner cell mass form into a two-layered disc of embryonic cells, and a space—the amniotic cavity—opens up between it and the trophoblast (Figure 4). Cells from the upper layer of the disc (the epiblast) extend around the amniotic cavity, creating a membranous sac that forms into the amnion by the end of the second week. The amnion fills with amniotic fluid and eventually grows to surround the embryo. Early in development, amniotic fluid consists almost entirely of a filtrate of maternal plasma, but as the kidneys of the fetus begin to function at approximately the eighth week, they add urine to the volume of amniotic fluid. Floating within the amniotic fluid, the embryo—and later, the fetus—is protected from trauma and rapid temperature changes. It can move freely within the fluid and can prepare for swallowing and breathing out of the uterus.

On the ventral side of the embryonic disc, opposite the amnion, cells in the lower layer of the embryonic disk (the hypoblast) extend into the blastocyst cavity and form a yolk sac. The yolk sac supplies some nutrients absorbed from the trophoblast and also provides primitive blood circulation to the developing embryo for the second and third week of development. When the placenta takes over nourishing the embryo at approximately week 4, the yolk sac has been greatly reduced in size and its main function is to serve as the source of blood cells and germ cells (cells that will give rise to gametes). During week 3, a finger-like outpocketing of the yolk sac develops into the allantois, a primitive excretory duct of the embryo that will become part of the urinary bladder. Together, the stalks of the yolk sac and allantois establish the outer structure of the umbilical cord.

The last of the extra-embryonic membranes is the chorion, which is the one membrane that surrounds all others. The development of the chorion will be discussed in more detail shortly, as it relates to the growth and development of the placenta.
As the third week of development begins, the two-layered disc of cells becomes a three-layered disc through the process of gastrulation, during which the cells transition from totipotency to multipotency. The embryo, which takes the shape of an oval-shaped disc, forms an indentation called the primitive streak along the dorsal surface of the epiblast. A node at the caudal or “tail” end of the primitive streak emits growth factors that direct cells to multiply and migrate. Cells migrate toward and through the primitive streak and then move laterally to create two new layers of cells. The first layer is the endoderm, a sheet of cells that displaces the hypoblast and lies adjacent to the yolk sac. The second layer of cells fills in as the middle layer, or mesoderm. The cells of the epiblast that remain (not having migrated through the primitive streak) become the ectoderm (Figure 5).

Each of these germ layers will develop into specific structures in the embryo. Whereas the ectoderm and endoderm form tightly connected epithelial sheets, the mesodermal cells are less organized and exist as a loosely connected cell community. The ectoderm gives rise to cell lineages that differentiate to become the central and peripheral nervous systems, sensory organs, epidermis, hair, and nails. Mesodermal cells ultimately become the skeleton, muscles, connective tissue, heart, blood vessels, and kidneys. The endoderm goes on to form the epithelial lining of the gastrointestinal tract, liver, and pancreas, as well as the lungs (Figure 6).
During the first several weeks of development, the cells of the endometrium—referred to as decidual cells—nourish the nascent embryo. During prenatal weeks 4–12, the developing placenta gradually takes over the role of feeding the embryo, and the decidual cells are no longer needed. The mature placenta is composed of tissues derived from the embryo, as well as maternal tissues of the endometrium. The placenta connects to the conceptus via the umbilical cord, which carries deoxygenated blood and wastes from the fetus through two umbilical arteries; nutrients and oxygen are carried from the pregnant person to the fetus through the single umbilical vein. The umbilical cord is surrounded by the amnion, and the spaces within the cord around the blood vessels are filled with Wharton’s jelly, a mucous connective tissue.

The maternal portion of the placenta develops from the deepest layer of the endometrium, the decidua basalis. To form the embryonic portion of the placenta, the syncytiotrophoblast and the underlying cells of the trophoblast (cytotrophoblast cells) begin to proliferate along with a layer of extraembryonic mesoderm cells. These form the chorionic membrane, which envelops the entire conceptus as the chorion. The chorionic membrane forms finger-like structures called chorionic villi that burrow into the endometrium like tree roots, making up the fetal portion of the placenta. The cytotrophoblast cells perforate the chorionic villi, burrow farther into the endometrium, and remodel maternal blood vessels to augment maternal blood flow surrounding the villi. Meanwhile, fetal mesenchymal cells derived from the mesoderm fill the villi and differentiate into blood vessels, including the three umbilical blood vessels that connect the embryo to the developing placenta (Figure 7).

The placenta develops throughout the embryonic period and during the first several weeks of the fetal period; placentation is complete by weeks 14–16. As a fully developed organ, the placenta provides nutrition and excretion, respiration, and endocrine function (Table 1 and Figure 8). It receives blood from the fetus through the umbilical arteries. Capillaries in the chorionic villi filter fetal wastes out of the blood and return clean, oxygenated blood to the fetus through the umbilical vein. Nutrients and oxygen are transferred from maternal blood surrounding the villi through the capillaries and into the fetal bloodstream. Some substances move across the placenta by simple diffusion. Oxygen, carbon dioxide, and any other lipid-soluble substances take this route. Other substances move across by facilitated diffusion. This includes water-soluble glucose. The fetus has a high demand for amino acids and iron, and those substances are moved across the placenta by active transport.

Maternal and fetal blood does not commingle because blood cells cannot move across the placenta. This separation prevents the pregnant person’s cytotoxic T cells from reaching and subsequently destroying the fetus, which bears “non-self” antigens. Further, it ensures the fetal red blood cells do not enter the pregnant person’s circulation and trigger antibody development (if they carry “non-self” antigens)—at least until the final stages of pregnancy or birth. This is the reason that, even in the absence of preventive treatment, an Rh− person doesn’t develop antibodies that could cause hemolytic disease in their first Rh+ fetus.

Although blood cells are not exchanged, the chorionic villi provide ample surface area for the two-way exchange of substances between maternal and fetal blood. The rate of exchange increases throughout gestation as the villi become thinner and increasingly branched. The placenta is permeable to lipid-soluble fetotoxic substances: alcohol, nicotine, barbiturates, antibiotics, certain pathogens, and many other substances that can be dangerous or fatal to the developing embryo or fetus. For these reasons, pregnant people should avoid fetotoxic substances. Alcohol consumption by pregnant people, for example, can result in a range of abnormalities referred to as fetal alcohol spectrum disorders (FASD). These include organ and facial malformations, as well as cognitive and behavioral disorders.
Following gastrulation, rudiments of the central nervous system develop from the ectoderm in the process of neurulation (Figure 9). Specialized neuroectodermal tissues along the length of the embryo thicken into the neural plate. During the fourth week, tissues on either side of the plate fold upward into a neural fold. The two folds converge to form the neural tube. The tube lies atop a rod-shaped, mesoderm-derived notochord, which eventually becomes the nucleus pulposus of intervertebral discs. Block-like structures called somites form on either side of the tube, eventually differentiating into the axial skeleton, skeletal muscle, and dermis. During the fourth and fifth weeks, the anterior neural tube dilates and subdivides to form vesicles that will become the brain structures.

Folate, one of the B vitamins, is important to the healthy development of the neural tube. A deficiency of maternal folate in the first weeks of pregnancy can result in neural tube defects, including spina bifida—a birth defect in which spinal tissue protrudes through the newborn’s vertebral column, which has failed to completely close. A more severe neural tube defect is anencephaly, a partial or complete absence of brain tissue.

The embryo, which begins as a flat sheet of cells, begins to acquire a cylindrical shape through the process of embryonic folding (Figure 10). The embryo folds laterally and again at either end, forming a C-shape with distinct head and tail ends. The embryo envelops a portion of the yolk sac, which protrudes with the umbilical cord from what will become the abdomen. The folding essentially creates a tube, called the primitive gut, that is lined by the endoderm. The amniotic sac, which was sitting on top of the flat embryo, envelops the embryo as it folds.

Within the first 8 weeks of gestation, a developing embryo establishes the rudimentary structures of all of its organs and tissues from the ectoderm, mesoderm, and endoderm. This process is called organogenesis.

Like the central nervous system, the heart also begins its development in the embryo as a tube-like structure, connected via capillaries to the chorionic villi. Cells of the primitive tube-shaped heart are capable of electrical conduction and contraction. The heart begins beating in the beginning of the fourth week, although it does not actually pump embryonic blood until a week later, when the oversized liver has begun producing red blood cells. (This is a temporary responsibility of the embryonic liver that the bone marrow will assume during fetal development.) During weeks 4–5, the eye pits form, limb buds become apparent, and the rudiments of the pulmonary system are formed.

During the sixth week, uncontrolled fetal limb movements begin to occur. The gastrointestinal system develops too rapidly for the embryonic abdomen to accommodate it, and the intestines temporarily loop into the umbilical cord. Paddle-shaped hands and feet develop fingers and toes by the process of apoptosis (programmed cell death), which causes the tissues between the fingers to disintegrate. By week 7, the facial structure is more complex and includes nostrils, outer ears, and lenses (Figure 11). By the eighth week, the head is nearly as large as the rest of the embryo’s body, and all major brain structures are in place. The external genitalia are apparent, but at this point, male and female embryos are indistinguishable. Bone begins to replace cartilage in the embryonic skeleton through the process of ossification. By the end of the embryonic period, the embryo is approximately 3 cm (1.2 in) from crown to rump and weighs approximately 8 g (0.25 oz).

OpenStax. (2022). Anatomy and Physiology 2e. Rice University. Retrieved June 15, 2023. ISBN-13: 978-1-711494-06-7 (Hardcover) ISBN-13: 978-1-711494-05-0 (Paperback) ISBN-13: 978-1-951693-42-8 (Digital). License: Attribution 4.0 International (CC BY 4.0). Access for free at openstax.org.

Pre-embryonic cleavages make use of the abundant cytoplasm of the conceptus as the cells rapidly divide without changing the total volume.

Ovulation, fertilization, pre-embryonic development, and implantation occur at specific locations within the female reproductive system in a time span of approximately 1 week.

During implantation, the trophoblast cells of the blastocyst adhere to the endometrium and digest endometrial cells until it is attached securely.

Formation of the embryonic disc leaves spaces on either side that develop into the amniotic cavity and the yolk sac.

Formation of the three primary germ layers occurs during the first 2 weeks of development. The embryo at this stage is only a few millimeters in length.

Following gastrulation of the embryo in the third week, embryonic cells of the ectoderm, mesoderm, and endoderm begin to migrate and differentiate into the cell lineages that will give rise to mature organs and organ systems in the infant.

In the placenta, maternal and fetal blood components are conducted through the surface of the chorionic villi, but maternal and fetal bloodstreams never mix directly.

This post-expulsion placenta and umbilical cord (white) are viewed from the fetal side.

The embryonic process of neurulation establishes the rudiments of the future central nervous system and skeleton.

Embryonic folding converts a flat sheet of cells into a hollow, tube-like structure.

An embryo at the end of 7 weeks of development is only 10 mm in length, but its developing eyes, limb buds, and tail are already visible. (This embryo was derived from an ectopic pregnancy.) (credit: Ed Uthman)

Nutrition and digestionRespirationEndocrine function
Mediates diffusion of maternal glucose, amino acids, fatty acids, vitamins, and mineralsStores nutrients during early pregnancy to accommodate increased fetal demand later in pregnancyExcretes and filters fetal nitrogenous wastes into maternal bloodMediates maternal-to-fetal oxygen transport and fetal-to-maternal carbon dioxide transportSecretes several hormones, including hCG, estrogens, and progesterone, to maintain the pregnancy and stimulate maternal and fetal developmentMediates the transmission of maternal hormones into fetal blood and vice versa
Nội dung này đang được cập nhật.
Dưới đây là video và các luyện tập (practice) của bài này. Nghe là một kĩ năng khó, đặc biệt là khi chúng ta chưa quen nội dung và chưa có nhạy cảm ngôn ngữ. Nhưng cứ đi thật chậm và đừng bỏ cuộc.
Xem video và cảm nhận nội dung bài. Bạn có thể thả trôi, cảm nhận dòng chảy ngôn ngữ và không nhất thiết phải hiểu toàn bộ bài. Bên dưới là script để bạn khái quát nội dụng và tra từ mới.
Script:
  1. As the zygote travels toward the uterus, it undergoes numerous cleavages in which the number of cells doubles.
  2. These cells are called blastomeres.
  3. Upon reaching the uterus, the conceptus has become a tightly packed sphere of cells called the morula.
  4. Then, the morula forms into a blastocyst consisting of an inner cell mass within a fluid-filled cavity surrounded by trophoblasts.
  5. The blastocyst implants in the uterine wall, the trophoblasts fuse to form a syncytiotrophoblast, and the conceptus is enveloped by the endometrium.
  6. Four embryonic membranes form to support the growing embryo: the amnion, the yolk sac, the allantois, and the chorion.
  7. The chorionic villi of the chorion extend into the endometrium to form the fetal portion of the placenta.
  8. The placenta supplies the growing embryo with oxygen and nutrients.
  9. It also removes carbon dioxide and other metabolic wastes.
  10. Following implantation, embryonic cells undergo gastrulation, in which they differentiate and separate into an embryonic disc and establish three primary germ layers, the endoderm, mesoderm, and ectoderm.
  11. Through the process of embryonic folding, the fetus begins to take shape.
  12. Neurulation starts the process of the development of structures of the central nervous system and organogenesis establishes the basic plan for all organ systems.
Bật video, nghe và điền từ vào chỗ trống.
Dưới đây là phần bàn luận. Bạn có thể tự do đặt câu hỏi, bổ sung kiến thức, và chia sẻ trải nghiệm của mình.
Subscribe
Notify of

0 Comments
Inline Feedbacks
View all comments

Ấn vào ô bên dưới để đánh dấu bạn đã hoàn thành bài học này

Quá dữ! Tiếp tục duy trì phong độ nhé!